Skip to main content

Models, methods and tools for ancestry inference and admixture analysis

Abstract

Background

Genetic admixture refers to the process or consequence of interbreeding between two or more previously isolated populations within a species. Compared to many other evolutionary driving forces such as mutations, genetic drift, and natural selection, genetic admixture is a quick mechanism for shaping population genomic diversity. In particular, admixture results in “recombination” of genetic variants that have been fixed in different populations, which has many evolutionary and medical implications.

Results

However, it is challenging to accurately reconstruct population admixture history and to understand of population admixture dynamics. In this review, we provide an overview of models, methods, and tools for ancestry inference and admixture analysis.

Conclusions

Many methods and tools used for admixture analysis were originally developed to analyze human data, but these methods can also be directly applied and/or slightly modified to study non-human species as well.

References

  1. Chakraborty, R. and Weiss, K. M. (1988) Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc. Natl. Acad. Sci. USA, 85, 9119–9123

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. McKeigue, P. M. (1997) Mapping genes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. Am. J. Hum. Genet., 60, 188–196

    CAS  PubMed  PubMed Central  Google Scholar 

  3. McKeigue, P. M. (1998) Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am. J. Hum. Genet., 63, 241–251

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Montana, G. and Pritchard, J. K. (2004) Statistical tests for admixture mapping with case-control and cases-only data. Am. J. Hum. Genet., 75, 771–789

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Stephens, J. C., Briscoe, D. and O’Brien, S. J. (1994) Mapping by admixture linkage disequilibrium in human populations: limits and guidelines. Am. J. Hum. Genet., 55, 809–824

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pfaff, C. L., Parra, E. J., Bonilla, C., Hiester, K., McKeigue, P. M., Kamboh, M. I., Hutchinson, R. G., Ferrell, R. E., Boerwinkle, E. and Shriver, M. D. (2001) Population structure in admixed populations: effect of admixture dynamics on the pattern of linkage disequilibrium. Am. J. Hum. Genet., 68, 198–207

    CAS  PubMed  Article  Google Scholar 

  7. Long, J. C. (1991) The genetic structure of admixed populations. Genetics, 127, 417–428

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ewens, W. J. and Spielman, R. S. (1995) The transmission/ disequilibrium test: history, subdivision, and admixture. Am. J. Hum. Genet., 57, 455–464

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Parra, E. J., Kittles, R. A., Argyropoulos, G., Pfaff, C. L., Hiester, K., Bonilla, C., Sylvester, N., Parrish-Gause, D., Garvey, W. T., Jin, L., et al. (2001) Ancestral proportions and admixture dynamics in geographically defined African Americans living in South Carolina. Am. J. Phys. Anthropol., 114, 18–29

    CAS  PubMed  Article  Google Scholar 

  10. Verdu, P. and Rosenberg, N. A. (2011) A general mechanistic model for admixture histories of hybrid populations. Genetics, 189, 1413–1426

    PubMed  PubMed Central  Article  Google Scholar 

  11. Guo, W. and Fung, W. K. (2006) The admixture linkage disequilibrium and genetic linkage inference on the gradual admixture population. Yi Chuan Xue Bao (in Chinese), 33, 12–18

    Google Scholar 

  12. Zakharia, F., Basu, A., Absher, D., Assimes, T. L., Go, A. S., Hlatky, M. A., Iribarren, C., Knowles, J. W., Li, J., Narasimhan, B., et al. (2009) Characterizing the admixed African ancestry of African Americans. Genome Biol., 10, R141

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Bryc, K., Auton, A., Nelson, M. R., Oksenberg, J. R., Hauser, S. L., Williams, S., Froment, A., Bodo, J.-M., Wambebe, C., Tishkoff, S. A., et al. (2010) Genome-wide patterns of population structure and admixture inWest Africans and African Americans. Proc. Natl. Acad. Sci. USA, 107, 786–791

    CAS  PubMed  Article  Google Scholar 

  14. Silva-Zolezzi, I., Hidalgo-Miranda, A., Estrada-Gil, J., Fernandez-Lopez, J. C., Uribe-Figueroa, L., Contreras, A., Balam-Ortiz, E., del Bosque-Plata, L., Velazquez-Fernandez, D., Lara, C., et al. (2009) Analysis of genomic diversity in Mexican Mestizo populations to develop genomic medicine in Mexico. Proc. Natl. Acad. Sci. USA, 106, 8611–8616

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Bryc, K., Velez, C., Karafet, T., Moreno-Estrada, A., Reynolds, A., Auton, A., Hammer, M., Bustamante, C. D. and Ostrer, H. (2010) Genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc. Natl. Acad. Sci. USA, 107, 8954–8961

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Xu, S., Huang, W., Qian, J. and Jin, L. (2008) Analysis of genomic admixture in Uyghur and its implication in mapping strategy. Am. J. Hum. Genet., 82, 883–894

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Xu, S. and Jin, L. (2008) A genome-wide analysis of admixture in Uyghurs and a high-density admixture map for disease-gene discovery. Am. J. Hum. Genet., 83, 322–336

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T. and Reich, D. (2012) Ancient admixture in human history. Genetics, 192, 1065–1093

    PubMed  PubMed Central  Article  Google Scholar 

  19. Loh, P. R., Lipson, M., Patterson, N., Moorjani, P., Pickrell, J. K., Reich, D. and Berger, B. (2013) Inferring admixture histories of human populations using linkage disequilibrium. Genetics, 193, 1233–1254

    PubMed  PubMed Central  Article  Google Scholar 

  20. Pickrell, J. K., Patterson, N., Loh, P. R., Lipson, M., Berger, B., Stoneking, M., Pakendorf, B. and Reich, D. (2014) Ancient west Eurasian ancestry in southern and eastern Africa. Proc. Natl. Acad. Sci. USA, 111, 2632–2637

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Pugach, I., Matveyev, R., Wollstein, A., Kayser, M. and Stoneking, M. (2011) Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol., 12, R19

    PubMed  PubMed Central  Article  Google Scholar 

  22. Jin, W., Li, R., Zhou, Y. and Xu, S. (2014) Distribution of ancestral chromosomal segments in admixed genomes and its implications for inferring population history and admixture mapping. Eur. J. Hum. Genet., 22, 930–937

    CAS  PubMed  Article  Google Scholar 

  23. Jin, W., Wang, S., Wang, H., Jin, L. and Xu, S. (2012) Exploring population admixture dynamics via empirical and simulated genome-wide distribution of ancestral chromosomal segments. Am. J. Hum. Genet., 91, 849–862

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Hellenthal, G., Busby, G. B., Band, G., Wilson, J. F., Capelli, C., Falush, D. and Myers, S. (2014) A genetic atlas of human admixture history. Science, 343, 747–751

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Gravel, S. (2012) Population genetics models of local ancestry. Genetics, 191, 607–619

    PubMed  PubMed Central  Article  Google Scholar 

  26. Pool, J. E. and Nielsen, R. (2009) Inference of historical changes in migration rate from the lengths of migrant tracts. Genetics, 181, 711–719

    PubMed  PubMed Central  Article  Google Scholar 

  27. Durand, E. Y., Patterson, N., Reich, D. and Slatkin, M. (2011) Testing for ancient admixture between closely related populations. Mol. Biol. Evol., 28, 2239–2252

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. and Singh, L. (2009) Reconstructing Indian population history. Nature, 461, 489–494

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Deng, L., Hoh, B. P., Lu, D., Fu, R., Phipps, M. E., Li, S., Nur-Shafawati, A. R., Hatin, W. I., Ismail, E., Mokhtar, S. S., et al. (2014) The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia. Hum. Genet., 133, 1169–1185

    PubMed  Article  Google Scholar 

  30. Raghavan, M., Skoglund, P., Graf, K. E., Metspalu, M., Albrechtsen, A., Moltke, I., Rasmussen, S., Stafford, T. W. Jr, Orlando, L., Metspalu, E., et al. (2014) Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature, 505, 87–91

    PubMed  Article  CAS  Google Scholar 

  31. Jones, E. R., Gonzalez-Fortes, G., Connell, S., Siska, V., Eriksson, A., Martiniano, R., McLaughlin, R. L., Gallego Llorente, M., Cassidy, L. M., Gamba, C., et al. (2015) Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun., 6, 8912

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Lu, D., Lou, H., Yuan, K., Wang, X., Wang, Y., Zhang, C., Lu, Y., Yang, X., Deng, L., Zhou, Y., et al. (2016) Ancestral origins and genetic history of Tibetan highlanders. Am. J. Hum. Genet., 99, 580–594

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., de Filippo, C., et al. (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–49

    PubMed  Article  CAS  Google Scholar 

  34. Sankararaman, S., Mallick, S., Dannemann, M., Prüfer, K., Kelso, J., Pääbo, S., Patterson, N. and Reich, D. (2014) The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507, 354–357

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Qin, P. and Stoneking, M. (2015) Denisovan ancestry in East Eurasian and native American populations. Mol. Biol. Evol., 32, 2665–2674

    CAS  PubMed  Article  Google Scholar 

  36. Padhukasahasram, B. (2014) Inferring ancestry from population genomic data and its applications. Front. Genet., 5, 204

    PubMed  PubMed Central  Article  Google Scholar 

  37. Pritchard, J. K., Stephens, M. and Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Falush, D., Stephens, M. and Pritchard, J. K. (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Falush, D., Stephens, M. and Pritchard, J. K. (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes, 7, 574–578

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Hubisz, M. J., Falush, D., Stephens, M. and Pritchard, J. K. (2009) Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour., 9, 1322–1332

    PubMed  PubMed Central  Article  Google Scholar 

  41. Raj, A., Stephens, M. and Pritchard, J. K. (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics, 197, 573–589

    PubMed  PubMed Central  Article  Google Scholar 

  42. Tang, H., Peng, J., Wang, P. and Risch, N. J. (2005) Estimation of individual admixture: analytical and study design considerations. Genet. Epidemiol., 28, 289–301

    PubMed  Article  Google Scholar 

  43. Alexander, D. H., Novembre, J. and Lange, K. (2009) Fast modelbased estimation of ancestry in unrelated individuals. Genome Res., 19, 1655–1664

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. and François, O. (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973–983

    PubMed  PubMed Central  Article  Google Scholar 

  45. Li, N. and Stephens, M. (2003) Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics, 165, 2213–2233

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoggart, C. J., Shriver, M. D., Kittles, R. A., Clayton, D. G. and McKeigue, P. M. (2004) Design and analysis of admixture mapping studies. Am. J. Hum. Genet., 74, 965–978

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Patterson, N., Hattangadi, N., Lane, B., Lohmueller, K. E., Hafler, D. A., Oksenberg, J. R., Hauser, S. L., Smith, M. W., O’ Brien, S. J., Altshuler, D., et al. (2004) Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet., 74, 979–1000

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Tang, H., Coram, M., Wang, P., Zhu, X. and Risch, N. (2006) Reconstructing genetic ancestry blocks in admixed individuals. Am. J. Hum. Genet., 79, 1–12

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Zhu, X., Cooper, R. S. and Elston, R. C. (2004) Linkage analysis of a complex disease through use of admixed populations. Am. J. Hum. Genet., 74, 1136–1153

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Price, A. L., Tandon, A., Patterson, N., Barnes, K. C., Rafaels, N., Ruczinski, I., Beaty, T. H., Mathias, R., Reich, D. and Myers, S. (2009) Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet., 5, e1000519

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Benirschke, K. (2002). The evolution and genetics of Latin American populations. J Hered., 93, 387

    Article  Google Scholar 

  52. Sundquist, A., Fratkin, E., Do, C. B. and Batzoglou, S. (2008) Effect of genetic divergence in identifying ancestral origin using HAPAA. Genome Res., 18, 676–682

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Lawson, D. J., Hellenthal, G., Myers, S. and Falush, D. (2012) Inference of population structure using dense haplotype data. PLoS Genet., 8, e1002453

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Sankararaman, S., Kimmel, G., Halperin, E. and Jordan, M. I. (2008) On the inference of ancestries in admixed populations. Genome Res., 18, 668–675

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Churchhouse, C. and Marchini, J. (2013) Multiway admixture deconvolution using phased or unphased ancestral panels. Genet. Epidemiol., 37, 1–12

    PubMed  Article  Google Scholar 

  56. Rodriguez, J. M., Bercovici, S., Elmore, M. and Batzoglou, S. (2013) Ancestry inference in complex admixtures via variablelength Markov chain linkage models. J. Comput. Biol., 20, 199–211

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Guan, Y. (2014) Detecting structure of haplotypes and local ancestry. Genetics, 196, 625–642

    PubMed  PubMed Central  Article  Google Scholar 

  58. Brown, R. and Pasaniuc, B. (2014) Enhanced methods for local ancestry assignment in sequenced admixed individuals. PLoS Comput. Biol., 10, e1003555

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Sankararaman, S., Sridhar, S., Kimmel, G. and Halperin, E. (2008) Estimating local ancestry in admixed populations. Am. J. Hum. Genet., 82, 290–303

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Pasaniuc, B., Sankararaman, S., Kimmel, G. and Halperin, E. (2009) Inference of locus-specific ancestry in closely related populations. Bioinformatics, 25, i213–i221

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Brisbin, A., Bryc, K., Byrnes, J., Zakharia, F., Omberg, L., Degenhardt, J., Reynolds, A., Ostrer, H., Mezey, J. G. and Bustamante, C. D. (2012) PCAdmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations. Hum. Biol., 84, 343–364

    PubMed  PubMed Central  Article  Google Scholar 

  62. Omberg, L., Salit, J., Hackett, N., Fuller, J., Matthew, R., Chouchane, L., Rodriguez-Flores, J. L., Bustamante, C., Crystal, R. G. and Mezey, J. G. (2012) Inferring genome-wide patterns of admixture in Qataris using fifty-five ancestral populations. BMC Genet., 13, 49

    PubMed  PubMed Central  Article  Google Scholar 

  63. Maples, B. K., Gravel, S., Kenny, E. E. and Bustamante, C. D. (2013) RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet., 93, 278–288

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Yang, J. J., Li, J., Buu, A. and Williams, L. K. (2013) Efficient inference of local ancestry. Bioinformatics, 29, 2750–2756

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Chakraborty, R. (1986) Gene admixture in human populations: models and predictions. Am. J. Phys. Anthropol., 29, 1–43

    Article  Google Scholar 

  66. Guo, W., Fung, W. K., Shi, N. and Guo, J. (2005) On the formula for admixture linkage disequilibrium. Hum. Hered., 60, 177–180

    PubMed  Article  Google Scholar 

  67. Wright, S. (1990) Evolution in Mendelian populations. Bull. Math. Biol., 52, 241–295

    CAS  PubMed  Article  Google Scholar 

  68. Kimura, M. and Weiss, G. H. (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Beerli, P. and Felsenstein, J. (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. USA, 98, 4563–4568

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Wright, S. (1943) Isolation by distance. Genetics, 28, 114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Patterson, N., Price, A. L. and Reich, D. (2006) Population structure and eigenanalysis. PLoS Genet., 2, e190

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Petkova, D., Novembre, J., and Stephens, M. (2014) Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet., 48, 94–100

    Article  CAS  Google Scholar 

  73. Johnson, N. A., Coram, M. A., Shriver, M. D., Romieu, I., Barsh, G. S., London, S. J. and Tang, H. (2011) Ancestral components of admixed genomes in a Mexican cohort. PLoS Genet., 7, e1002410

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Ni, X., Yang, X., Guo, W., Yuan, K., Zhou, Y., Ma, Z. and Xu, S. (2016) Corrigendum: length distribution of ancestral tracks under a general admixture model and its applications in population history inference. Sci. Rep., 6, 26367

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Moorjani, P., Patterson, N., Hirschhorn, J. N., Keinan, A., Hao, L., Atzmon, G., Burns, E., Ostrer, H., Price, A. L. and Reich, D. (2011) The history of African gene flow into Southern Europeans, Levantines, and Jews. PLoS Genet., 7, e1001373

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M., Kidd, K. K., Zhivotovsky, L. A. and Feldman, M. W. (2002) Genetic structure of human populations. Science, 298, 2381–2385

    CAS  PubMed  Article  Google Scholar 

  77. Altshuler, D. M., Gibbs, R. A., Peltonen, L., Altshuler, D. M., Gibbs, R. A., Peltonen, L., Dermitzakis, E., Schaffner, S. F., Yu, F., Peltonen, L., et al. (2010) Integrating common and rare genetic variation in diverse human populations. Nature, 467, 52–58

    CAS  PubMed  Article  Google Scholar 

  78. Ni, X., Yang, X., Guo, W., Yuan, K., Zhou, Y., Ma, Z. and Xu, S. (2016) Length distribution of ancestral tracks under a general admixture model and its applications in population history inference. Sci. Rep., 6, 20048

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Pugach, I., Matveev, R., Spitsyn, V., Makarov, S., Novgorodov, I., Osakovsky, V., Stoneking, M. and Pakendorf, B. (2016) The complex admixture history and recent southern origins of Siberian populations. Mol. Biol. Evol., 33, 1777–1795

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Ni, X., Yang, X., Yuan, K., Feng, Q., Guo, W., Ma, Z. and Xu, S. (2016) Inference of multiple-wave admixtures by length distribution of ancestral tracks. bioRxiv 096560

    Google Scholar 

  81. Hill, W. G. and Robertson, A. (2007) The effect of linkage on limits to artificial selection. Genet. Res., 89, 311–336

    CAS  PubMed  Article  Google Scholar 

  82. Chakraborty, R. and Weiss, K. M. (1988) Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc. Natl. Acad. Sci. USA, 85, 9119–9123

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Winkler, C. A., Nelson, G. W. and Smith, M. W. (2010) Admixture mapping comes of age. Annu. Rev. Genomics Hum. Genet., 11, 65–89

    CAS  PubMed  Article  Google Scholar 

  84. Zhou, Y., Yuan, K., Yu, Y., Ni, X., Xie, P., Xing, E. P. and Xu, S. (2017) Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with polynomial functions. Heredity (Edinb), 118, 503–510

    CAS  Article  Google Scholar 

  85. Zhou, Y., Qiu, H. and Xu, S. (2017) Modeling continuous admixture using admixture-induced linkage disequilibrium. Sci. Rep., 7, 43054

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Rogers, A. R. and Huff, C. (2009) Linkage disequilibrium between loci with unknown phase. Genetics, 182, 839–844

    PubMed  PubMed Central  Article  Google Scholar 

  87. Ding, Q., Hu, Y., Xu, S., Wang, J. and Jin, L. (2014) Neanderthal introgression at chromosome 3p21.31 was under positive natural selection in East Asians. Mol. Biol. Evol., 31, 683–695

    CAS  PubMed  Article  Google Scholar 

  88. Ding, Q., Hu, Y., Xu, S., Wang, C. C., Li, H., Zhang, R., Yan, S., Wang, J. and Jin, L. (2014) Neanderthal origin of the haplotypes carrying the functional variant Val92Met in the MC1R in modern humans. Mol. Biol. Evol., 31, 1994–2003

    CAS  PubMed  Article  Google Scholar 

  89. Huerta-Sánchez, E., Jin, X., Asan Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., Yi, X., He, M., SomelM., et al. (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512, 194–197

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. Abi-Rached, L., Jobin, M. J., Kulkarni, S., McWhinnie, A., Dalva, K., Gragert, L., Babrzadeh, F., Gharizadeh, B., Luo, M., Plummer, F. A., et al. (2011) The shaping of modern human immune systems by multiregional admixture with archaic humans. Science, 334, 89–94

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Mendez, F. L., Watkins, J. C. and Hammer, M. F. (2012) Global genetic variation at OAS1 provides evidence of archaic admixture in Melanesian populations. Mol. Biol. Evol., 29, 1513–1520

    CAS  PubMed  Article  Google Scholar 

  92. Mendez, F. L., Watkins, J. C. and Hammer, M. F. (2012) A haplotype at STAT2 introgressed from neanderthals and serves as a candidate of positive selection in Papua New Guinea. Am. J. Hum. Genet., 91, 265–274

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., et al. (2010) A draft sequence of the Neandertal genome. Science, 328, 710–722

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A.W., Stenzel, U., Johnson, P. L. F., et al. (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., Racimo, F., Mallick, S., Schraiber, J. G., Jay, F., Prüfer, K., de Filippo, C., et al. (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science, 338, 222–226

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Castellano, S., Parra, G., Sánchez-Quinto, F. A., Racimo, F., Kuhlwilm, M., Kircher, M., Sawyer, S., Fu, Q., Heinze, A., Nickel, B., et al. (2014) Patterns of coding variation in the complete exomes of three Neandertals. Proc. Natl. Acad. Sci. USA, 111, 6666–6671

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Racimo, F., Sankararaman, S., Nielsen, R. and Huerta-Sánchez, E. (2015) Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet., 16, 359–371

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Plagnol, V. and Wall, J. D. (2006) Possible ancestral structure in human populations. PLoS Genet., 2, e105

    PubMed  PubMed Central  Article  Google Scholar 

  99. Wall, J. D., Lohmueller, K. E. and Plagnol, V. (2009) Detecting ancient admixture and estimating demographic parameters in multiple human populations. Mol. Biol. Evol., 26, 1823–1827

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Vernot, B. and Akey, J. M. (2014) Resurrecting surviving Neandertal lineages from modern human genomes. Science, 343, 1017–1021

    CAS  PubMed  Article  Google Scholar 

  101. Seguin-Orlando, A., Korneliussen, T. S., Sikora, M., Malaspinas, A.-S., Manica, A., Moltke, I., Albrechtsen, A., Ko, A., Margaryan, A., Moiseyev, V., et al. (2014) Genomic structure in Europeans dating back at least 36,200 years. Science, 346, 1113–1118

    CAS  PubMed  Article  Google Scholar 

  102. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H., et al. (2010) A draft sequence of the Neandertal genome. Science, 328, 710–722

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Hu, Y., Ding, Q., He, Y., Xu, S. and Jin, L. (2015) Reintroduction of a homocysteine level-associated allele into east asians by Neanderthal introgression. Mol. Biol. Evol., 32, 3108–3113

    CAS  PubMed  Google Scholar 

  104. Mallo, D. and Posada, D. (2016) Multilocus inference of species trees and DNA barcoding. Philos. Trans. R. Soc. Lond. B Biol. Sci., 371, 20150335

    PubMed  PubMed Central  Article  Google Scholar 

  105. Xu, B. and Yang, Z. (2016) Challenges in species tree estimation under the multispecies coalescent model. Genetics, 204, 1353–1368

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Mailund, T., Munch, K. and Schierup, M. H. (2014) Lineage sorting in apes. Annu. Rev. Genet., 48, 519–535

    CAS  PubMed  Article  Google Scholar 

  107. Huerta-Sánchez, E., Jin, X., Asan Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., Yi, X., He, M., Somel, M., et al. (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512, 194–197

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. Hobolth, A., Dutheil, J. Y., Hawks, J., Schierup, M. H. and Mailund, T. (2011) Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Res., 21, 349–356

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Hinch, A. G., Tandon, A., Patterson, N., Song, Y., Rohland, N., Palmer, C. D., Chen, G. K., Wang, K., Buxbaum, S. G., Akylbekova, E. L., et al. (2011) The landscape of recombination in African Americans. Nature, 476, 170–175

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

S.X. acknowledges financial support from the National Natural Science Foundation of China (NSFC) grant (Nos. 91331204 and 31711530221), the Strategic Priority Research Program (No. XDB13040100) and Key Research Program of Frontier Sciences (No. QYZDJ-SSW-SYS009) of the Chinese Academy of Sciences (CAS), the National Science Fund for Distinguished Young Scholars (No. 31525014), and the Program of Shanghai Academic Research Leader (No. 16XD1404700); S.X. is Max- Planck Independent Research Group Leader and member of CAS Youth Innovation Promotion Association. S.X. also gratefully acknowledges the support of the National Program for Top-notch Young Innovative Talents of The “Wanren Jihua” Project. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, K., Zhou, Y., Ni, X. et al. Models, methods and tools for ancestry inference and admixture analysis. Quant Biol 5, 236–250 (2017). https://doi.org/10.1007/s40484-017-0117-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40484-017-0117-2

Keywords

  • genetic admixture
  • ancestry
  • population structures
  • demographic history
  • archaic introgression
  • incomplete lineage sorting