Zhu, X.-G., Zhang, G. L., Tholen, D., Wang, Y., Xin, C. P. and Song, Q. F. (2011) The next generation models for crops and agroecosystems. Sci. China Inf. Sci., 54, 589–597
Article
Google Scholar
Hammer, G. L., van Oosterom, E., McLean, G., Chapman, S. C., Broad, I., Harland, P. and Muchow, R. C. (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot., 61, 2185–2202
CAS
Article
PubMed
Google Scholar
Ruíz-Nogueira, B., Boote, K. J. and Sau, F. (2001) Calibration and use of CROPGRO-soybean model for improving soybean management under rainfed conditions. Agric. Syst., 68, 151–173
Article
Google Scholar
Ma, W., Trusina, A., El-Samad, H., Lim, W. A. and Tang, C. (2009) Defining network topologies that can achieve biochemical adaptation. Cell, 138, 760–773
CAS
Article
PubMed
PubMed Central
Google Scholar
Xin, C. P., Yang, J. and Zhu, X.-G. (2013) A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem IIunits. Photosynth. Res., 117, 339–354
CAS
Article
PubMed
Google Scholar
Xiao, Y. and Zhu, X.-G. (2016) Chlorophyll fluorescecence and stable isotope signals in photosynthesis research. Plant Physiology Journal (in Chinese), 52, 1663–1670
Google Scholar
Tholen, D. and Zhu, X.-G. (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol., 156, 90–105
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang, Y., Song, Q., Jaiswal, D., de Souza, A. P., Long, S. P. and Zhu, X.-G. (2017) Development of a three dimensional ray-tracing model of sugarcane canopy photosynthesis and its applications in assessing impacts of varied row spacing. Bioenerg Res., doi: 10.1007/s12155-017-9823-x
Google Scholar
Zheng, B., Biddulph, B., Li, D., Kuchel, H. and Chapman, S. (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J. Exp. Bot., 64, 3747–3761
CAS
Article
PubMed
PubMed Central
Google Scholar
Tubiello, F. N., Soussana, J.-F. and Howden, S. M. (2007) Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA, 104, 19686–19690
CAS
Article
PubMed
PubMed Central
Google Scholar
Miguez, F. E., Zhu, X., Humphries, S., Bollero, G. A. and Long, S. P. (2009) A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus giganteus: description, parameterization and validation. GCB Bioenergy, 1, 282–296
Article
Google Scholar
Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., Bregaglio, S., Buis, S., Confalonieri, R., Fumoto, T., et al. (2015) Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol., 21, 1328–1341
CAS
Article
Google Scholar
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D. and Bounoua, L. (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. part I: model formulation. J. Clim., 9, 676–705
Article
Google Scholar
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., et al. (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science, 290, 291–296
CAS
Article
PubMed
Google Scholar
Xue, Y., Chong, K., Han, B., Gui, J., Wang, T., Fu, X., He, Z., Chu, C., Tian, Z., Cheng, Z., Lin, S. (2015) New chapter of designer breeding in China: update on strategic program of molecular module-based designer breeding systems. Buttletin of Chinese Academy of Sciences, 30, 393–402
Google Scholar
Zhu, X.-G., Portis, A. R. Jr and Long, S. P. (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ., 27, 155–165
CAS
Article
Google Scholar
Zhu, X.-G., Ort, D. R., Whitmarsh, J. and Long, S. P. (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J. Exp. Bot., 55, 1167–1175
CAS
Article
PubMed
Google Scholar
Drewry, D. T., Kumar, P. and Long, S. P. (2014) Simultaneous improvement in productivity, water use, and albedo through crop structural modification. Glob. Change Biol., 20, 1955–1967
Article
Google Scholar
Song, Q.-F., Zhang, G. and Zhu, X.-G. (2013) Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2–a theoretical study using a mechanistic model of canopy photosynthesis. Funct. Plant Biol., 40, 108–124
CAS
Article
Google Scholar
Zhu, X.-G., de Sturler, E. and Long, S. P. (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol., 145, 513–526
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang, Y., Long, S. P. and Zhu, X. G. (2014) Elements required for an efficient NADP-malic enzyme type C4 photosynthesis. Plant Physiol., 164, 2231–2246
CAS
Article
PubMed
PubMed Central
Google Scholar
Xin, C. P., Tholen, D., Devloo, V. and Zhu, X. G. (2015) The benefits of photorespiratory bypasses: how can they work? Plant Physiol., 167, 574–585
CAS
Article
PubMed
Google Scholar
Wang, S., Tholen, D. and Zhu, X. G. (2017) C4 photosynthesis in C3 rice: a theoretical analysis of biochemical and anatomical factors. Plant Cell Environ., 40, 80–94
CAS
Article
PubMed
Google Scholar
Xiao, Y., Tholen, D. and Zhu, X.-G. (2016) The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model. J. Exp. Bot., 67, 6021–6035
CAS
Article
PubMed
PubMed Central
Google Scholar
Simkin, A. J., McAusland, L., Headland, L. R., Lawson, T. and Raines, C. A. (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J. Exp. Bot., 66, 4075–4090
CAS
Article
PubMed
PubMed Central
Google Scholar
Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K. and Long, S. P. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354, 857–861
CAS
Article
PubMed
Google Scholar
Nunes-Nesi, A., Carrari, F., Lytovchenko, A., Smith, A. M., Loureiro, M. E., Ratcliffe, R. G., Sweetlove, L. J. and Fernie, A. R. (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol., 137, 611–622
CAS
Article
PubMed
PubMed Central
Google Scholar
Sweetlove, L. J., Lytovchenko, A., Morgan, M., Nunes-Nesi, A., Taylor, N. L., Baxter, C. J., Eickmeier, I. and Fernie, A. R. (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc. Natl. Acad. Sci. USA, 103, 19587–19592
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu, X.-G., Wang, Y., Ort, D. R. and Long, S. P. (2013) e-Photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis. Plant Cell Environ., 36, 1711–1727
CAS
Article
PubMed
Google Scholar
Owen, N. A. and Griffiths, H. (2013) A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases. New Phytol., 200, 1116–1131
CAS
Article
PubMed
Google Scholar
Cortassa, S., Aon, M. A., O’Rourke, B., Jacques, R., Tseng, H. J., Marbán, E. and Winslow, R. L. (2006) A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys. J., 91, 1564–1589
CAS
Article
PubMed
PubMed Central
Google Scholar
Thornley, J. H. M. and Cannell, M. G. R. (2000) Modelling the components of plant respiration: representation and realism. Ann. Bot. (Lond.), 85, 55–67
CAS
Article
Google Scholar
Lawson, T., Simkin, A. J., Kelly, G. and Granot, D. (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol., 203, 1064–1081
CAS
Article
PubMed
Google Scholar
Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J. and Medrano, H. (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ., 31, 602–621
CAS
Article
PubMed
Google Scholar
Baroli, I., Price, G. D., Badger, M. R. and von Caemmerer, S. (2008) The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol., 146, 737–747
CAS
Article
PubMed
PubMed Central
Google Scholar
Wong, S.-C., Cowan, I. R. and Farquhar, G. D. (1979) Stomatal conductance correlates with photosynthetic capacity. Nature, 282, 424–426
Article
Google Scholar
Farquhar, G. D. and Sharkey, T. D. (1982) Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33, 317–345
CAS
Article
Google Scholar
Buckley, T. N., Mott, K. A. and Farquhar, G. D. (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ., 26, 1767–1785
CAS
Article
Google Scholar
Ball, J. T., Woodrow, I. E. and Berry, J. A. (1987) A Model Predicting Stomatal Conductance and Its Contribution to The Control of Photosynthesis Under Different Environmental Conditions. In Progress in Photosynthesis Research. Biggens, J. ed., Vol, IV,pp. 221–224. Berlin: Springer Netherlands
Article
Google Scholar
Loreto, F., Harley, P. C., Di Marco, G. and Sharkey, T. D. (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol., 98, 1437–1443
CAS
Article
PubMed
PubMed Central
Google Scholar
Pons, T. L., Flexas, J., von Caemmerer, S., Evans, J. R., Genty, B., Ribas-Carbo, M. and Brugnoli, E. (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J. Exp. Bot., 60, 2217–2234
CAS
Article
PubMed
Google Scholar
Tholen, D., Boom, C. and Zhu, X.-G. (2012) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci., 197, 92–101
CAS
Article
PubMed
Google Scholar
Xiong, D., Liu, X., Liu, L., Douthe, C., Li, Y., Peng, S. and Huang, J. (2015) Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ., 38, 2541–2550
CAS
Article
PubMed
Google Scholar
Ho, Q. T., Berghuijs, H. N., Watté, R., Verboven, P., Herremans, E., Yin, X., Retta, M. A., Aernouts, B., Saeys, W., Helfen, L., et al. (2016) Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. Plant Cell Environ., 39, 50–61
CAS
Article
PubMed
Google Scholar
Price, N. D., Reed, J. L. and Palsson, B. O. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol., 2, 886–897
CAS
Article
PubMed
Google Scholar
Guo, Y., Ma, Y., Zhan, Z., Li, B., Dingkuhn, M., Luquet, D. and De Reffye, P. (2006) Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Ann. Bot. (Lond.), 97, 217–230
Article
Google Scholar
Watanabe, T., Hanan, J. S., Room, P. M., Hasegawa, T., Nakagawa, H. and Takahashi, W. (2005) Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann. Bot. (Lond.), 95, 1131–1143
Article
Google Scholar
Song, Y. H., Smith, R. W., To, B. J., Millar, A. J. and Imaizumi, T. (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science, 336, 1045–1049
CAS
Article
PubMed
PubMed Central
Google Scholar
Domagalska, M. A. and Leyser, O. (2011) Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol., 12, 211–221
CAS
Article
PubMed
Google Scholar
Minchin, P. E. H. and Lacointe, A. (2005) New understanding on phloem physiology and possible consequences for modelling longdistance carbon transport. New Phytol., 166, 771–779
CAS
Article
PubMed
Google Scholar
Rasse, D. P. and Tocquin, P. (2006) Leaf carbohydrate controls over Arabidopsis growth and response to elevated CO2: an experimentally based model. New Phytol., 172, 500–513
CAS
Article
PubMed
Google Scholar
Lynch, J. P. (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. (Lond.), 112, 347–357
CAS
Article
Google Scholar
Dyson, R. J., Vizcay-Barrena, G., Band, L. R., Fernandes, A. N., French, A. P., Fozard, J. A., Hodgman, T. C., Kenobi, K., Pridmore, T. P., Stout, M., et al. (2014) Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending. New Phytol., 202, 1212–1222
Article
PubMed
PubMed Central
Google Scholar
Chang, T. G. and Zhu, X. G. (2017) Source-sink interaction: a century old concept under the light of modern molecular systems biology. J. Exp. Bot. erx002
Google Scholar
Yin, X. and Struik, P. C. (2010) Modelling the crop: from system dynamics to systems biology. J. Exp. Bot., 61, 2171–2183
CAS
Article
PubMed
Google Scholar
Li, Y., Pearl, S. A. and Jackson, S. A. (2015) Gene networks in plant biology: approaches in reconstruction and analysis. Trends Plant Sci., 20, 664–675
CAS
Article
PubMed
Google Scholar
Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D. and Friedman, N. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166–176
CAS
Article
PubMed
Google Scholar
Zheng, G., Xu, Y., Zhang, X., Liu, Z. P., Wang, Z., Chen, L. and Zhu, X. G. (2016) CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data. BMC Bioinformatics, 17, 535
Article
PubMed
PubMed Central
Google Scholar
Wenden, B. and Rameau, C. (2009) Systems biology for plant breeding: the example of flowering time in pea. C. R. Biol., 332, 998–1006
Article
PubMed
Google Scholar
Salazar, J. D., Saithong, T., Brown, P. E., Foreman, J., Locke, J. C., Halliday, K. J., Carré, I. A., Rand, D. A. and Millar, A. J. (2009) Prediction of photoperiodic regulators from quantitative gene circuit models. Cell, 139, 1170–1179
CAS
Article
PubMed
Google Scholar
Bassel, G. W., Lan, H., Glaab, E., Gibbs, D. J., Gerjets, T., Krasnogor, N., Bonner, A. J., Holdsworth, M. J. and Provart, N. J. (2011) Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl. Acad. Sci. USA, 108, 9709–9714
CAS
Article
PubMed
PubMed Central
Google Scholar
Chew, Y. H., Wenden, B., Flis, A., Mengin, V., Taylor, J., Davey, C. L., Tindal, C., Thomas, H., Ougham, H. J., de Reffye, P., et al. (2014) Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc. Natl. Acad. Sci. USA, 111, E4127–E4136
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhu, X.-G., Song, Q. and Ort, D. R. (2012) Elements of a dynamic systems model of canopy photosynthesis. Curr. Opin. Plant Biol., 15, 237–244
CAS
Article
PubMed
Google Scholar
Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J.-C., Seastedt, T., Garcia Moya, E., et al. (1993) Observations and modelling of biomass and soil organic matter dynamics for the grassland biome wordwide. Global Biogeochem. Cycles, 7, 785–809
CAS
Article
Google Scholar
Parton, W. J., Stewart, J.W. B. and Cole, C. V. (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 5, 109–131
CAS
Article
Google Scholar
Buckley, T. N. (2005) The control of stomata by water balance. New Phytol., 168, 275–292
CAS
Article
PubMed
Google Scholar
Lynch, J. P., Nielsen, K. L., Davis, R. D. and Jablokow, A. G. (1997) SimRoot: modeling and visualization of root systems. Plant Soil, 188, 139–151
CAS
Article
Google Scholar
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J. and Ritchie, J. T. (2003) The DSSAT cropping system model. Eur. J. Agron., 18, 235–265
Article
Google Scholar
McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P. and Freebairn, D. M. (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst., 50, 255–271
Article
Google Scholar
Humphries, S. W. and Long, S. P. (1995) WIMOVAC: a software package for modelling the dynamics of plant leaf and canopy photosynthesis. Comput. Appl. Biosci., 11, 361–371
CAS
PubMed
Google Scholar
Song, Q., Chen, D., Long, S. P. and Zhu, X. G. (2017) A userfriendly means to scale from the biochemistry of photosynthesis to whole crop canopies and production in time and space— development of Java WIMOVAC. Plant Cell Environ., 40, 51–55
CAS
Article
PubMed
Google Scholar
Norman, J. M. (1980) Interfacing leaf and canopy light interception models. In Predicting Photosynthesis for Ecosystem Models. Hesketh, J. D. & Jones, J. W. eds. Vol. 2, pp. 49–67. Boca Raton: CRC Press
Google Scholar
Farquhar, G. D., von Caemmerer, S. and Berry, J. A. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78–90
CAS
Article
PubMed
Google Scholar
Pokhilko, A., Flis, A., Sulpice, R., Stitt, M. and Ebenhöh, O. (2014) Adjustment of carbon fluxes to light conditions regulates the daily turnover of starch in plants: a computational model. Mol. Biosyst., 10, 613–627
CAS
Article
PubMed
Google Scholar
de Oliveira Dal’Molin, C. G., Quek, L.-E., Palfreyman, R. W., Brumbley, S. M. and Nielsen, L. K. (2010) C4GEM, a genomescale metabolic model to study C4 plant metabolism. Plant Physiol., 154, 1871–1885
Article
PubMed Central
Google Scholar
de Oliveira Dal’Molin, C. G., Quek, L. E., Palfreyman, R. W., Brumbley, S. M. and Nielsen, L. K. (2010) AraGEM, a genomescale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol., 152, 579–589
Article
PubMed
PubMed Central
Google Scholar
Warren, J. M., Hanson, P. J., Iversen, C. M., Kumar, J., Walker, A. P. and Wullschleger, S. D. (2015) Root structural and functional dynamics in terrestrial biosphere models — evaluation and recommendations. New Phytol., 205, 59–78
Article
PubMed
Google Scholar
Zhu, X.-G., Govindjee Baker, N. R., de Sturler, E., Ort, D. O. and Long, S. P. (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta, 223, 114–133
CAS
Article
PubMed
Google Scholar
Yu, X., Zheng, G., Shan, L., Meng, G., Vingron, M., Liu, Q. and Zhu, X. G. (2014) Reconstruction of gene regulatory network related to photosynthesis in Arabidopsis thaliana. Front. Plant Sci., 5, 273
PubMed
PubMed Central
Google Scholar
Chandrasekaran, S. and Price, N. D. (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 107, 17845–17850
CAS
Article
PubMed
PubMed Central
Google Scholar
Enquist, B. J. and Niklas, K. J. (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517–1520
CAS
Article
PubMed
Google Scholar
Box, G. E. P. (1976) Science and statistics. J. Am. Stat. Assoc., 71, 791–799
Article
Google Scholar
Machta, B. B., Chachra, R., Transtrum, M. K. and Sethna, J. P. (2013) Parameter space compression underlies emergent theories and predictive models. Science, 342, 604–607
CAS
Article
PubMed
Google Scholar
Zhou, M., Wang, W., Karapetyan, S., Mwimba, M., Marqués, J., Buchler, N. E. and Dong, X. (2015) Redox rhythm reinforces the circadian clock to gate immune response. Nature, 523, 472–476
Article
PubMed
PubMed Central
Google Scholar
Zuo, J. and Li, J. (2014) Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Natl. Sci. Rev. 1, 253–276
CAS
Article
Google Scholar
Valluru, R., Reynolds, M. P. and Salse, J. (2014) Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theor. Appl. Genet., 127, 1463–1489
CAS
Article
PubMed
Google Scholar
Wallace, J. G., Larsson, S. J. and Buckler, E. S. (2014) Entering the second century of maize quantitative genetics. Heredity (Edinb), 112, 30–38
CAS
Article
Google Scholar
Kaul, S., Koo, H. L., Jenkins, J., Rizzo, M., Rooney, T., Tallon, L. J., Feldblyum, T., Nierman, W., Benito, M., Lin, X. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815
CAS
Article
Google Scholar
Zhu, X. G., Lynch, J. P., LeBauer, D. S., Millar, A. J., Stitt, M. and Long, S. P. (2016) Plants in silico: why, why now and what—an integrative platform for plant systems biology research. Plant Cell Environ., 39, 1049–1057
CAS
Article
PubMed
Google Scholar
Marshall-Colon, A., Long, S. P., Allen, D. K., Allen, G., Beard, D. A., Benes, B., von Caemmerer, S., Christensen, A. J., Cox, D. J., Hart, J. C. et al. (2017) Crops in silico: a prospectus from the plants in silico symposium and workshop. Front. Plant Sci. 8, 786
Article
PubMed
PubMed Central
Google Scholar
Yabusaki, S., Fang, Y., Chen, X., Scheibe, T. D. (2016) Single Plant Root Systems Modeling Under Soil Moisture Variation. In 2016 American Geophysical Union, San Francisco
Google Scholar