Quantitative Biology

, Volume 5, Issue 2, pp 124–135 | Cite as

Control of synthetic gene networks and its applications

  • David J. Menn
  • Ri-Qi Su
  • Xiao Wang



One of the underlying assumptions of synthetic biology is that biological processes can be engineered in a controllable way.


Here we discuss this assumption as it relates to synthetic gene regulatory networks (GRNs).We first cover the theoretical basis of GRN control, then address three major areas in which control has been leveraged: engineering and analysis of network stability, temporal dynamics, and spatial aspects.


These areas lay a strong foundation for further expansion of control in synthetic GRNs and pave the way for future work synthesizing these disparate concepts.


synthetic biology gene regulatory networks modeling GRN control stochasticity 



We thank members of Xiao Wang’s lab for helpful discussions and suggestions. X.W.’s lab is supported by the National Institutes of Health Grant GM106081. D. J. M. is partially supported by the Arizona State University Dean’s Fellowship.


  1. 1.
    Antoni, D., Zverlov, V. V. and Schwarz, W. H. (2007) Biofuels from microbes. Appl. Microbiol. Biotechnol., 77, 23–35PubMedCrossRefGoogle Scholar
  2. 2.
    Dellomonaco, C., Fava, F. and Gonzalez, R. (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb. Cell Fact., 9, 3PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Harrison, M. E. and Dunlop, M. J. (2012) Synthetic feedback loop model forincreasing microbial biofuel production using a biosensor. Front. Microbio., 3, 360CrossRefGoogle Scholar
  4. 4.
    Krom, R. J., Bhargava, P., Lobritz, M. A. and Collins, J. J. (2015) Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett., 15, 4808–4813PubMedCrossRefGoogle Scholar
  5. 5.
    Sufya, N., Allison, D. and Gilbert, P. (2003) Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J. Appl. Microbiol., 95, 1261–1267PubMedCrossRefGoogle Scholar
  6. 6.
    de Lorenzo, V. (2008) Systems biology approaches to bioremediation. Curr. Opin. Biotechnol., 19, 579–589PubMedCrossRefGoogle Scholar
  7. 7.
    Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D. and Keasling, J. D. (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol., 21, 796–802PubMedCrossRefGoogle Scholar
  8. 8.
    Ellis, T., Adie, T. and Baldwin, G. S. (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr. Biol., 3, 109CrossRefGoogle Scholar
  9. 9.
    Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A. and Smith, H. O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods, 6, 343–345PubMedCrossRefGoogle Scholar
  10. 10.
    Densmore, D., Hsiau, T. H. C., Kittleson, J. T., DeLoache, W., Batten, C. and Anderson, J. C. (2010) Algorithms for automated DNA assembly. Nucleic Acids Res., 38, 2607–2616PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. Nat. Biotechnol., 26, 1135–1145PubMedCrossRefGoogle Scholar
  12. 12.
    Chavez, A., Scheiman, J., Vora, S., Pruitt, B. W., Tuttle, M., Iyer, E. P. R., Lin, S., Kiani, S., Guzman, C. D., Wiegand, D. J., et al. (2015) Highly efficient Cas9-mediated transcriptional programming. Nat. Methods, 12, 326–328PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kiani, S., Beal, J., Ebrahimkhani, M. R., Huh, J., Hall, R. N., Xie, Z., Li, Y. and Weiss, R. (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods, 11, 723–726PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Standage-Beier, K., Zhang, Q. and Wang, X. (2015) Targeted large-scale deletion of bacterial genomes using CRISPRnickases. ACS Synth. Biol., 4, 1217–1225PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Guido, N. J., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J., Cantor, C. R., Elston, T. C. and Collins, J. (2006) A bottom-up approach to gene regulation. Nature, 439, 856–860PubMedCrossRefGoogle Scholar
  16. 16.
    Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S. and Hasty, J. (2008) A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–519PubMedCrossRefGoogle Scholar
  17. 17.
    Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338PubMedCrossRefGoogle Scholar
  18. 18.
    Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, L.-Z., Wu, F., Flores, K., Lai, Y.-C. and Wang, X. (2016) Build to understand: synthetic approaches to biology. Integr. Biol., 8, 394–408CrossRefGoogle Scholar
  20. 20.
    Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K. and Ueda, T. (2001) Cell-free translation reconstituted with purified components. Nat. Biotechnol., 19, 751–755PubMedCrossRefGoogle Scholar
  21. 21.
    Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., et al. (2016) Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell, 165, 1255–1266PubMedCrossRefGoogle Scholar
  22. 22.
    Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, F., Menn, D. J. and Wang, X. (2014) Quorum-sensing crosstalk-driven synthetic circuits: from unimodality to trimodality. Chem. Biol., 21, 1629–1638PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wu, M., Su, R.-Q., Li, X., Ellis, T., Lai, Y.-C. and Wang, X. (2013) Engineering of regulated stochastic cell fate determination. Proc. Natl. Acad. Sci. USA, 110, 10610–10615PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Xiong, W. and Ferrell, J. E. Jr. (2003) A positive-feedback-based bistable “memory module” that governs a cell fate decision. Nature, 426, 460–465PubMedCrossRefGoogle Scholar
  26. 26.
    Ellis, T., Wang, X. and Collins, J. J. (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol., 27, 465–471PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. and Paulsson, J. (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature, 538, 514–517PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. and Weiss, R. (2005) A synthetic multicellular system for programmed pattern formation. Nature, 434, 1130–1134PubMedCrossRefGoogle Scholar
  29. 29.
    Liu, C., Fu, X., Liu, L., Ren, X., Chau, C. K., Li, S., Xiang, L., Zeng, H., Chen, G., Tang, L.-H., et al. (2011) Sequential establishment of stripe patterns in an expanding cell population. Science, 334, 238–241PubMedCrossRefGoogle Scholar
  30. 30.
    Payne, S., Li, B., Cao, Y., Schaeffer, D., Ryser, M. D. and You, L. (2013) Temporal control of self-organized pattern formation without morphogen gradients in bacteria. Mol. Syst. Biol., 9, 697PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199–1202PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Tamsir, A., Tabor, J. J. and Voigt, C. A. (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature, 469, 212–215PubMedCrossRefGoogle Scholar
  33. 33.
    Yang, L., Nielsen, A. A., Fernandez-Rodriguez, J., McClune, C. J., Laub, M. T., Lu, T. K. and Voigt, C. A. (2014) Permanent genetic memory with >1-byte capacity. Nat. Methods, 11, 1261–1266PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Nielsen, A. A. and Voigt, C. A. (2014) Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol., 10, 763PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ishimatsu, K., Hata, T., Mochizuki, A., Sekine, R., Yamamura, M. and Kiga, D. (2014) General applicability of synthetic geneoverexpression for cell-type ratio control via reprogramming. ACS Synth. Biol., 3, 638–644PubMedCrossRefGoogle Scholar
  36. 36.
    Yamaguchi, M., Ito, A., Ono, A., Kawabe, Y. and Kamihira, M. (2014) Heat-inducible gene expression system by applying alternating magnetic field to magnetic nanoparticles. ACS Synth. Biol., 3, 273–279PubMedCrossRefGoogle Scholar
  37. 37.
    Hussain, F., Gupta, C., Hirning, A. J., Ott, W., Matthews, K. S., Josić, K. and Bennett, M. R. (2014) Engineered temperature compensation in a synthetic genetic clock. Proc. Natl. Acad. Sci. USA, 111, 972–977PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A., Ellington, A. D., Marcotte, E. M., et al. (2005) Synthetic biology: engineering Escherichia coli to see light. Nature, 438, 441–442PubMedCrossRefGoogle Scholar
  39. 39.
    Levskaya, A., Weiner, O. D., Lim, W. A. and Voigt, C. A. (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature, 461, 997–1001PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jogler, C. and Schüler, D. (2009) Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol., 63, 501–521PubMedCrossRefGoogle Scholar
  41. 41.
    Wang, L.-Z., Su, R.-Q., Huang, Z.-G., Wang, X., Wang, W.-X., Grebogi, C. and Lai, Y.-C. (2016) A geometrical approach to control and controllability of nonlinear dynamical networks. Nat. Commun., 7, 11323PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shin, Y.-J. and Bleris, L. (2010) Linear control theory for gene network modeling. PLoS One, 5, e12785PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Del Vecchio, D., Dy, A. J. and Qian, Y. (2016) Control theory meets synthetic biology. J. R. Soc. Interface, 13, 20160380PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kalman, R. E. (1963) Mathematical description of linear dynamical systems. J. Soc. Ind. Appl. Math. Ser. Control, 1, 152–192CrossRefGoogle Scholar
  45. 45.
    Lin, C.-T. (1974) Structural controllability. IEEE Trans. Automat. Contr., 19, 201–208CrossRefGoogle Scholar
  46. 46.
    Keasling, J. D. (2010) Manufacturing molecules through metabolic engineering. Science, 330, 1355–1358PubMedCrossRefGoogle Scholar
  47. 47.
    Koffas, M., Roberge, C., Lee, K. and Stephanopoulos, G. (1999) Metabolic engineering. Annu. Rev. Biomed. Eng., 1, 535–557PubMedCrossRefGoogle Scholar
  48. 48.
    Polynikis, A., Hogan, S. and di Bernardo, M. (2009) Comparing different ODE modelling approaches for gene regulatory networks. J. Theor. Biol., 261, 511–530PubMedCrossRefGoogle Scholar
  49. 49.
    Liu, Y.-Y., Slotine, J.-J. and Barabási, A.-L. (2011) Controllability of complex networks. Nature, 473, 167–173PubMedCrossRefGoogle Scholar
  50. 50.
    Basler, G., Nikoloski, Z., Larhlimi, A., Barabási, A.-L. and Liu, Y.-Y. (2016) Control of fluxes in metabolic networks. Genome Res., 26, 956–968PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Strogatz, S. H. (2014) Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Boulder: Westview PressGoogle Scholar
  52. 52.
    Faucon, P. C., Pardee, K., Kumar, R. M., Li, H., Loh, Y.-H. and Wang, X. (2014) Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One, 9, e102873PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kim, D. H., Grün, D. and van Oudenaarden, A. (2013) Dampening of expression oscillations by synchronous regulation of a microRNA and its target. Nat. Genet., 45, 1337–1344PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Thorsley, D. and Klavins, E. (2012) Estimation and discrimination of stochastic biochemical circuits from time-lapse microscopy data. PLoS One, 7, e47151PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA, 99, 12795–12800PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang, J., Xu, L. and Wang, E. (2008) Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA, 105, 12271–12276PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361CrossRefGoogle Scholar
  58. 58.
    Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R. and You, L. (2008) A synthetic Escherichia coli predator — prey ecosystem. Mol. Syst. Biol., 4, 187PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Song, H., Payne, S., Gray, M. and You, L. (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat. Chem. Biol., 5, 929–935PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Song, H. and You, L. (2012) Modeling Spatiotemporal Dynamics of Bacterial Populations. In Computational Modeling of Signaling Networks. New Jersey: Humana PressGoogle Scholar
  61. 61.
    Kim, K.-Y. and Wang, J. (2007) Potential energy landscape and robustness of a gene regulatory network: toggle switch. PLoS Comput. Biol., 3, e60PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Huang, S., Eichler, G., Bar-Yam, Y. and Ingber, D. E. (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett., 94, 128701PubMedCrossRefGoogle Scholar
  63. 63.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U. (2002) Network motifs: simple building blocks of complex networks. Science, 298, 824–827PubMedCrossRefGoogle Scholar
  64. 64.
    Ma, W., Trusina, A., El-Samad, H., Lim, W. A. and Tang, C. (2009) Defining network topologies that can achieve biochemical adaptation. Cell, 138, 760–773PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mallet, D. G. and De Pillis, L. G. (2006) A cellular automata model of tumor—immune system interactions. J. Theor. Biol., 239, 334–350PubMedCrossRefGoogle Scholar
  66. 66.
    Huang, S., Ernberg, I. and Kauffman, S. (2009) Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol., 20, 869–876PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wells, D. K., Kath, W. L. and Motter, A. E. (2015) Control of stochastic and induced switching in biophysical networks. Phys. Rev. X, 5, 031036PubMedPubMedCentralGoogle Scholar
  68. 68.
    Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. and Van Oudenaarden, A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740PubMedCrossRefGoogle Scholar
  69. 69.
    Leisner, M., Kuhr, J.-T., Rädler, J. O., Frey, E. and Maier, B. (2009) Kinetics of genetic switching into the state of bacterial competence. Biophys. J., 96, 1178–1188PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. and Leibler, S. (2004) Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625PubMedCrossRefGoogle Scholar
  71. 71.
    Dhar, N. and McKinney, J. D. (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol., 10, 30–38PubMedCrossRefGoogle Scholar
  72. 72.
    Davidson, E.H., Rast, J.P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.-H., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., et al. (2002) A genomic regulatory network for development. Science, 295, 1669–1678PubMedCrossRefGoogle Scholar
  73. 73.
    Lipshtat, A., Loinger, A., Balaban, N. Q. and Biham, O. (2006) Genetic toggle switch without cooperative binding. Phys. Rev. Lett., 96, 188101PubMedCrossRefGoogle Scholar
  74. 74.
    Isaacs, F. J., Hasty, J., Cantor, C. R. and Collins, J. J. (2003) Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA, 100, 7714–7719PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Singh, V. (2014) Recent advancements in synthetic biology: current status and challenges. Gene, 535, 1–11PubMedCrossRefGoogle Scholar
  76. 76.
    Greber, D., El-Baba, M. D. and Fussenegger, M. (2008) Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res., 36, e101PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Smits, W. K., Eschevins, C. C., Susanna, K. A., Bron, S., Kuipers, O. P. and Hamoen, L. W. (2005) Stripping Bacillus: ComK autostimulation is responsible for the bistable response in competence development. Mol. Microbiol., 56, 604–614PubMedCrossRefGoogle Scholar
  78. 78.
    Tan, C., Marguet, P. and You, L. (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol., 5, 842–848PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Yao, G., Tan, C., West, M., Nevins, J. R. and You, L. (2011) Origin of bistability underlying mammalian cell cycle entry. Mol. Syst. Biol., 7, 485PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Prill, R. J., Iglesias, P. A. and Levchenko, A. (2005) Dynamic properties of network motifs contribute to biological network organization. PLoS Biol., 3, e343PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., Ross, D., Densmore, D. and Voigt, C. A. (2016) Genetic circuit design automation. Science, 352, aac7341PubMedCrossRefGoogle Scholar
  82. 82.
    Ausländer, S., Ausländer, D., Müller, M., Wieland, M. and Fussenegger, M. (2012) Programmable single-cell mammalian biocomputers. Nature, 487, 123–127PubMedCrossRefGoogle Scholar
  83. 83.
    Gaber, R., Lebar, T., Majerle, A., Čter, B., Dobnikar, A., Benčina, M. and Jerala, R. (2014) Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nat. Chem. Biol., 10, 203–208PubMedCrossRefGoogle Scholar
  84. 84.
    Mishra, D., Rivera, P. M., Lin, A., Del Vecchio, D. and Weiss, R. (2014) A load driver device for engineering modularity in biological networks. Nat. Biotechnol., 32, 1268–1275PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Del Vecchio, D. (2013) A control theoretic framework for modular analysis and design of biomolecular networks. Annu. Rev. Contr., 37, 333–345CrossRefGoogle Scholar
  86. 86.
    Harbauer, A. B., Opalińska, M., Gerbeth, C., Herman, J. S., Rao, S., Schönfisch, B., Guiard, B., Schmidt, O., Pfanner, N. and Meisinger, C. (2014) Cell cycle—dependent regulation of mitochondrial preprotein translocase. Science, 346, 1109–1113PubMedCrossRefGoogle Scholar
  87. 87.
    Feillet, C., Krusche, P., Tamanini, F., Janssens, R. C., Downey, M. J., Martin, P., Teboul, M., Saito, S., Lévi, F. A., Bretschneider, T., et al. (2014) Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc. Natl. Acad. Sci. USA, 111, 9828–9833PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kim, J., Khetarpal, I., Sen, S. and Murray, R. M. (2014) Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids Res., 42, 6078–6089PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ostojic, S. (2014) Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat. Neurosci., 17, 594–600PubMedCrossRefGoogle Scholar
  90. 90.
    Comb, M., Hyman, S. E. and Goodman, H. M. (1987) Mechanisms of trans-synaptic regulation of gene expression. Trends Neurosci., 10, 473–478CrossRefGoogle Scholar
  91. 91.
    Tigges, M., Marquez-Lago, T. T., Stelling, J. and Fussenegger, M. (2009) A tunable synthetic mammalian oscillator. Nature, 457, 309–312PubMedCrossRefGoogle Scholar
  92. 92.
    Xiao, M. and Cao, J. (2008) Genetic oscillation deduced from Hopf bifurcation in a genetic regulatory network with delays. Math. Biosci., 215, 55–63PubMedCrossRefGoogle Scholar
  93. 93.
    Zakharova, A., Vadivasova, T., Anishchenko, V., Koseska, A. and Kurths, J. (2010) Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 81, 011106PubMedCrossRefGoogle Scholar
  94. 94.
    Lewis, J. (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol., 13, 1398–1408PubMedCrossRefGoogle Scholar
  95. 95.
    Swinburne, I. A., Miguez, D. G., Landgraf, D. and Silver, P. A. (2008) Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev., 22, 2342–2346PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Izhikevich, E. M. (2000) Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos, 10, 1171–1266CrossRefGoogle Scholar
  97. 97.
    Fuqua, W. C., Winans, S. C. and Greenberg, E. P. (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell densityresponsive transcriptional regulators. J. Bacteriol., 176, 269–275PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Oates, A. C., Morelli, L. G. and Ares, S. (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development, 139, 625–639PubMedCrossRefGoogle Scholar
  99. 99.
    You, L., Cox, R. S. III, Weiss, R. and Arnold, F. H. (2004) Programmed population control by cell–cell communication and regulated killing. Nature, 428, 868–871PubMedCrossRefGoogle Scholar
  100. 100.
    Balagaddé, F. K., You, L., Hansen, C. L., Arnold, F. H. and Quake, S. R. (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science, 309, 137–140PubMedCrossRefGoogle Scholar
  101. 101.
    Cao, Y., Ryser, M. D., Payne, S., Li, B., Rao, C. V. and You, L. (2016) Collective space-sensing coordinates pattern scaling in engineered bacteria. Cell, 165, 620–630PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Smith, R., Tan, C., Srimani, J. K., Pai, A., Riccione, K. A., Song, H. and You, L. (2014) Programmed Allee effect in bacteria causes a tradeoff between population spread and survival. Proc. Natl. Acad. Sci. USA, 111, 1969–1974PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bintu, L., Yong, J., Antebi, Y. E., McCue, K., Kazuki, Y., Uno, N., Oshimura, M. and Elowitz, M. B. (2016) Dynamics of epigenetic regulation at the single-cell level. Science, 351, 720–724PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Keung, A. J., Bashor, C. J., Kiriakov, S., Collins, J. J. and Khalil, A. S. (2014) Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell, 158, 110–120PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  1. 1.School of Biological and Health Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations