Abstract
Background
Recently, optogenetics based on genetically encoded photosensitive proteins has emerged as an innovative technology platform to revolutionize manipulation of cellular behavior through light stimulation. It has enabled user defined control of various cellular behaviors with spatiotemporal precision and minimal invasiveness, creating unprecedented opportunities for biomedical applications.
Results
This article reviews current advances in optogenetic networks designed for the treatment of human diseases. We highlight the advantages of these optogenetic networks, as well as emerging questions and future perspectives.
Conclusions
Various optogenetic systems have been engineered to control biological processes at all levels using light and applied for numerous diseases, such as metabolic disorders, cancer, and immune diseases. Continued development of optogenetic modules will be necessary to precisely control of gene expression magnitude towards clinical medical practice in the context of real-world problems.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A. and Weiss, R. (2014) Realizing the potential of synthetic biology. Nat. Rev. Mol. Cell Biol., 15, 289–294
Xie, M. Q., Haellman, V. and Fussenegger, M. (2016) Synthetic biology — application-oriented cell engineering. Curr. Opin. Biotechnol., 40, 139–148
Khalil, A. S. and Collins, J. J. (2010) Synthetic biology: applications come of age. Nat. Rev. Genet., 11, 367–379
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
Ye, H. F., Xie, M. Q., Xue, S., Hamri, G. C., Yin, J. L., Zulewski, H., and Fussenegger, M. (2016) Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng. 1, 0005
Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S. and Hasty, J. (2008) A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–519
Fung, E., Wong, W. W., Suen, J. K., Bulter, T., Lee, S. G. and Liao, J. C. (2005) A synthetic gene-metabolic oscillator. Nature, 435, 118–122
Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A., Levskaya, A., Marcotte, E. M., Voigt, C. A. and Ellington, A. D. (2009) A synthetic genetic edge detection program. Cell, 137, 1272–1281
Bulter, T., Lee, S. G., Wong, W. W. C., Fung, E., Connor, M. R. and Liao, J. C. (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA, 101, 2299–2304
Pathak, G. P., Vrana, J. D. and Tucker, C. L. (2013) Optogenetic control of cell function using engineered photoreceptors. Biol. Cell, 105, 59–72
Chen, X. J., Li, T., Wang, X., Du, Z. M., Liu, R. M. and Yang, Y. (2016) Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light. Nucleic Acids Res., 44, 2677–2690
Chen, X., Li, T., Wang, X. and Yang, Y. (2015) A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes. Biochem. Biophys. Res. Commun., 465, 769–776
Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J. and Fussenegger, M. (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol., 28, 355–360
Rössger, K., Charpin-El Hamri, G. and Fussenegger, M. (2013) Reward-based hypertension control by a synthetic brain-dopamine interface. Proc. Natl. Acad. Sci. USA, 110, 18150–18155
Nihongaki, Y., Kawano, F., Nakajima, T. and Sato, M. (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol., 33, 755–760
Zhang, K. and Cui, B. X. (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol., 33, 92–100
Weitzman, M. and Hahn, K. M. (2014) Optogenetic approaches to cell migration and beyond. Curr. Opin. Cell Biol., 30, 112–120
Okuno, D., Asaumi, M. and Muneyuki, E. (1999) Chloride concentration dependency of the electrogenic activity of halorhodopsin. Biochemistry, 38, 5422–5429
Zemelman, B. V., Lee, G. A., Ng, M. and Miesenbock, G. (2002) Selective photostimulation of genetically ChARGed neurons. Neuron, 33, 15–22
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P. and Bamberg, E. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA, 100, 13940–13945
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. and Deisseroth, K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 8, 1263–1268
Kato, H. E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., Hirata, K., Ito, J., Aita, Y., Tsukazaki, T., Hayashi, S., et al. (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature, 482, 369–374
Oesterhelt, D. (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struct. Biol., 8, 489–500
Haupts, U., Tittor, J. and Oesterhelt, D. (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct., 28, 367–399
Nagel, G., Brauner, M., Liewald, J. F., Adeishvili, N., Bamberg, E. and Gottschalk, A. (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid Behavioral responses. Curr. Biol., 15, 2279–2284
Editorial (2011) Method of the Year 2010. Nat. Methods, 8, 1
News, S. (2010) Stepping away from the trees for a look at the forest. Science, 330, 1612–1613
Christie, J. M., Gawthorne, J., Young, G., Fraser, N. J. and Roe, A. J. (2012) LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol. Plant, 5, 533–544
Muller, K., Engesser, R., Metzger, S., Schulz, S., Kampf, M. M., Busacker, M., Steinberg, T., Tomakidi, P., Ehrbar, M., Nagy, F., et al. (2013) A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res., 41, e77
Wieland, M., Muller, M., Kyburz, A., Heissig, P., Wekenmann, S., Stolz, F., Auslander, S. and Fussenegger, M. (2014) Engineered UV-A light-responsive gene expression system for measuring sun cream efficacy in mammalian cell culture. J. Biotechnol., 189, 150–153
Kawano, F., Suzuki, H., Furuya, A. and Sato, M. (2015) Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun., 6, 6256
Folcher, M., Oesterle, S., Zwicky, K., Thekkottil, T., Heymoz, J., Hohmann, M., Christen, M., Daoud-El-Baba, M. D., Buchmann, P. and Fussenegger, M. (2014) Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun., 5, 5392
Fraikin, G. Y., Strakhovskaya, M. G., Belenikina, N. S. and Rubin, A. B. (2015) Bacterial photosensory proteins: regulatory functions and optogenetic applications. Microbiology, 84, 461–472
Montgomery, K. L., Iyer, S. M., Christensen, A. J., Deisseroth, K. and Delp, S. L. (2016) Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sci. Transl. Med., 8, 337rv5
Laakso, M. and Kuusisto, J. (2014) Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat. Rev. Endocrinol., 10, 293–302
Chen, L., Magliano, D. J. and Zimmet, P. Z. (2012) The worldwide epidemiology of type 2 diabetes mellitus — present and future perspectives. Nat. Rev. Endocrinol., 8, 228–236
Grundy, S. M. (2006) Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy. Nat. Rev. Drug Discov., 5, 295–309
Ye, H. F., Doaud-El Baba, M., Peng, R. W. and Fussenegger, M. (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science, 332, 1565–1568
Wang, X., Chen, X. J. and Yang, Y. (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods, 9, 266–269
Waldmann, T. A. (2003) Immunotherapy: past, present and future. Nat. Med., 9, 269–277
Kalos, M. and June, C. H. (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. immunity, 39, 49–60
Restifo, N. P., Dudley, M. E. and Rosenberg, S. A. (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol., 12, 269–281
Vivier, E., Ugolini, S., Blaise, D., Chabannon, C. and Brossay, L. (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat. Rev. Immunol., 12, 239–252
He, L., Zhang, Y.W., Ma, G. L., Tan, P., Li, Z. J., Zang, S. B., Wu, X., Jing, J., Fang, S. H., Zhou, L. J., et al. (2015) Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. eLife, 4, 25
Xu, Y. X., Hyun, Y. M., Lim, K., Lee, H., Cummings, R. J., Gerber, S. A., Bae, S., Cho, T. Y., Lord, E. M. and Kim, M. (2014) Optogenetic control of chemokine receptor signal and T-cell migration. Proc. Natl. Acad. Sci. USA, 111, 6371–6376
Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S. and Amigorena, S. (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med., 204, 345–356
Breart, B., Lemaitre, F., Celli, S. and Bousso, P. (2008) Twophoton imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J. Clin. Invest., 118, 1390–1397
Cipolotti, L., Shallice, T., Chan, D., Fox, N., Scahill, R., Harrison, G., Stevens, J. and Rudge, P. (2001) Long-term retrograde amnesia... the crucial role of the hippocampus. Neuropsychologia, 39, 151–172
Nadel, L. and Moscovitch, M. (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol., 7, 217–227
Buccione, I., Fadda, L., Serra, L., Caltagirone, C. and Carlesimo, G. A. (2008) Retrograde episodic and semantic memory impairment correlates with side of temporal lobe damage. J. Int. Neuropsychol. Soc., 14, 1083–1094
Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K. and Tonegawa, S. (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381–385.
Ramirez, S., Liu, X., Lin, P. A., Suh, J., Pignatelli, M., Redondo, R. L., Ryan, T. J. and Tonegawa, S. (2013) Creating a false memory in the hippocampus. Science, 341, 387–391
Redondo, R. L., Kim, J., Arons, A. L., Ramirez, S., Liu, X. and Tonegawa, S. (2014) Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature, 513, 426–430
Denny, C. A., Kheirbek, M. A., Alba, E. L., Tanaka, K. F., Brachman, R. A., Laughman, K. B., Tomm, N. K., Turi, G. F., Losonczy, A. and Hen, R. (2014) Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron, 83, 189–201
Tanaka, K. Z., Pevzner, A., Hamidi, A. B., Nakazawa, Y., Graham, J. and Wiltgen, B. J. (2014) Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron, 84, 347–354
Cowansage, K. K., Shuman, T., Dillingham, B. C., Chang, A., Golshani, P. and Mayford, M. (2014) Direct reactivation of a coherent neocortical memory of context. Neuron, 84, 432–441
Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. and Tonegawa, S. (2015) Engram cells retain memory under retrograde amnesia. Science, 348, 1007–1013
Nader, K., Schafe, G. E. and Le Doux, J. E. (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406, 722–726
Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E., et al. (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol., 16, 1741–1747
Bellmann, D., Richardt, A., Freyberger, R., Nuwal, N., Schwarzel, M., Fiala, A. and Stortkuhl, K. F. (2010) Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front. Behav. Neurosci., 4, 10
Hull, E. M., Du, J. F., Lorrain, D. S. and Matuszewich, L. (1995) Extracellular dopamine in the medial preoptic area — implications for sexual motivation and hormonal-control of copulation. J. Neurosci., 15, 7465–7471
Sadeghipour, H., Ghasemi, M., Ebrahimi, F. and Dehpour, A. R. (2007) Effect of lithium on endothelium-dependent and neurogenic relaxation of rat corpus cavernosum: role of nitric oxide pathway. Nitric Oxide, 16, 54–63
Melis, M. R., Spano, M. S., Succu, S. and Argiolas, A. (2000) Activation of γ-aminobutyric acidA receptors in the paraventricular nucleus of the hypothalamus reduces apomorphine-, Nmethyl-D-aspartic acid-and oxytocin-induced penile erection and yawning in male rats. Neurosci. Lett., 281, 127–130
Melis, M. R., Succu, S. and Argiolas, A. (1997) Prevention by morphine of N-methyl-D-aspartic acid-induced penile erection and yawning: involvement of nitric oxide. Brain Res. Bull., 44, 689–694
Melis, M. R., Succu, S., Iannucci, U. and Argiolas, A. (1997) Nmethyl-D-aspartic acid-induced penile erection and yawning: role of hypothalamic paraventricular nitric oxide. Eur. J. Pharmacol., 328, 115–123
Toda, N., Ayajiki, K. and Okamura, T. (2005) Nitric oxide and penile erectile function. Pharmacol. Ther., 106, 233–266
Melis, M. R. and Argiolas, A. (1999) Yawning: role of hypothalamic paraventricular nitric oxide. Acta Pharmacol. Sin., 20, 778–788
Melis, M. R. and Argiolas, A. (1997) Role of central nitric oxide in the control of penile erection and yawning. Prog. Neuropsychopharmacol. Biol. Psychiatry, 21, 899–922
Nunes, K. P., Labazi, H. and Webb, R. C. (2012) New insights into hypertension-associated erectile dysfunction. Curr. Opin. Nephrol. Hypertens., 21, 163–170
Fraga-Silva, R. A., Costa-Fraga, F. P., Faye, Y., Sturny, M., Santos, R. A., Dasilva, R. F. and Stergiopulos, N. (2014) An increased arginase activity is associated with corpus cavernosum impairment induced by hypercholesterolemia. J. Sex. Med., 11, 1173–1181
Pauker-Sharon, Y., Arbel, Y., Finkelstein, A., Halkin, A., Herz, I., Banai, S. and Justo, D. (2013) Cardiovascular risk factors in men with ischemic heart disease and erectile dysfunction. Urology, 82, 377–381
Huang, S. S., Lin, C. H., Chan, C. H., Loh, E. W. and Lan, T. H. (2013) Newly diagnosed major depressive disorder and the risk of erectile dysfunction: a population-based cohort study in Taiwan. Psychiatry Res., 210, 601–606
Kim, T., Folcher, M., Doaud-El Baba, M. and Fussenegger, M. (2015) A synthetic erectile optogenetic stimulator enabling bluelight-inducible penile erection. Angew. Chem. Int. Ed., 54, 5933–5938
Champion, H. C., Bivalacqua, T. J., Hyman, A. L., Ignarro, L. J., Hellstrom, W. J. G. and Kadowitz, P. J. (1999) Gene transfer of endothelial nitric oxide synthase to the penis augments erectile responses in the aged rat. Proc. Natl. Acad. Sci. USA, 96, 11648–11652
Bennett, N. E., Kim, J. H., Wolfe, D. P., Sasaki, K., Yoshimura, N., Goins, W. F., Huang, S., Nelson, J. B., de Groat, W. C. and Glorioso, J. C. (2005) Improvement in erectile dysfunction after neurotrophic factor gene therapy in diabetic rats. J. Urol., 173, 1820–1824
Christ, G. J., Day, N., Santizo, C., Sato, Y. S., Zhao, W. X., Sclafani, T., Bakal, R., Salman, M., Davies, K. and Melman, A. (2004) Intracorporal injection of hSlo cDNA restores erectile capacity in STZ-diabetic F-344 rats in vivo. Heart Circul. Physiol., 287, H1544–H1553
Magee, T. R., Ferrini, M., Garban, H. J., Vernet, D., Mitani, K., Rajfer, J. and Gonzalez-Cadavid, F. (2002) Gene therapy of erectile dysfunction in the rat with penile neuronal nitric oxide synthase. Biol. Reprod., 67, 20–28
Chancellor, M. B., Tirney, S., Mattes, C. E., Tzeng, E., Birder, L. A., Kanai, A. J., de Groat, W. C., Huard, J. and Yoshimura, N. (2003) Nitric oxide synthase gene transfer for erectile dysfunction in a rat model. BJU Int., 91, 691–696
Antonenkov, V. D., Grunau, S., Ohlmeier, S. and Hiltunen, J. K. (2010) Peroxisomes are oxidative organelles. Antioxid. Redox Signal., 13, 525–537
Millecamps, S. and Julien, J. P. (2013) Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci., 14, 161–176
Niopek, D., Benzinger, D., Roensch, J., Draebing, T., Wehler, P., Eils, R. and Di Ventura, B. (2014) Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat. Commun., 5, 4404
Crefcoeur, R. P., Yin, R. H., Ulm, R. and Halazonetis, T. D. (2013) Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells. Nat. Commun., 4, 1779
Yang, X. J., Jost, A. P. T., Weiner, O. D. and Tang, C. (2013) A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol. Biol. Cell, 24, 2419–2430
Yumerefendi, H., Dickinson, D. J., Wang, H., Zimmerman, S. P., Bear, J. E., Goldstein, B., Hahn, K. and Kuhlman, B. (2015) Control of protein activity and cell fate specification via lightmediated nuclear translocation. PLoS One, 10, e0128443
Spiltoir, J. I., Strickland, D., Glotzer, M. and Tucker, C. L. (2016) Optical control of peroxisomal trafficking. ACS Synth. Biol., 5, 554–560
van Bergeijk, P., Adrian, M., Hoogenraad, C. C. and Kapitein, L. C. (2015) Optogenetic control of organelle transport and positioning. Nature, 518, 111–114
Ishikawa, K., Tamura, Y. and Maruta, S. (2014) Photocontrol of mitotic kinesin Eg5 facilitated by thiol-reactive photochromic molecules incorporated into the loop L5 functional loop. J. Biochem., 155, 195–206
Kamei, T., Fukaminato, T. and Tamaoki, N. (2012) A photochromic ATP analogue driving a motor protein with reversible light-controlled motility: controlling velocity and binding manner of a kinesin-microtubule system in an in vitro motility assay. Chem. Commun. (Camb.), 48, 7625–7627
Nakamura, M., Chen, L., Howes, S. C., Schindler, T. D., Nogales, E. and Bryant, Z. (2014) Remote control of myosin and kinesin motors using light-activated gearshifting. Nat. Nanotechnol., 9, 693–697
Duan, L. T., Che, D., Zhang, K., Ong, Q. X., Guo, S. L. and Cui, B. X. (2015) Optogenetic control of molecular motors and organelle distributions in cells. Chem. Biol., 22, 671–682
Jena, B., Dotti, G. and Cooper, L. J. N. (2010) Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood, 116, 1035–1044
Yazawa, M., Sadaghiani, A. M., Hsueh, B. and Dolmetsch, R. E. (2009) Induction of protein-protein interactions in live cells using light. Nat. Biotechnol., 27, 941–945
Park, J. S., Rhau, B., Hermann, A., McNally, K. A., Zhou, C., Gong, D., Weiner, O. D., Conklin, B. R., Onuffer, J. and Lim, W. A. (2014) Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc. Natl. Acad. Sci. USA, 111, 5896–5901
Taslimi, A., Zoltowski, B., Miranda, J. G., Pathak, G. P., Hughes, R. M. and Tucker, C. L. (2016) Optimized second-generation CRY2-CIB dimerizers and photoactivatable cre recombinase. Nat. Chem. Biol., 12, 425–430
Konermann, S., Brigham, M. D., Trevino, A. E., Hsu, P. D., Heidenreich, M., Cong, L., Platt, R. J., Scott, D. A., Church, G. M. and Zhang, F. (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature, 500, 472.
Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. and Bonas, U. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512
Moscou, M. J. and Bogdanove, A. J. (2009) A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501
Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M. and Arlotta, P. (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol., 29, 149–153
Kennedy, M. J., Hughes, R. M., Peteya, L. A., Schwartz, J. W., Ehlers, M. D. and Tucker, C. L. (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods, 7, 973–975
Liu, H. T., Yu, X. H., Li, K. W., Klejnot, J., Yang, H. Y., Lisiero, D. and Lin, C. T. (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 322, 1535–1539
Holkers, M., Maggio, I., Liu, J., Janssen, J. M., Miselli, F., Mussolino, C., Recchia, A., Cathomen, T. and Goncalves, M. (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res., 41, e63
Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. and Sato, M. (2015) CRISPR-Cas9-based photoactivatable transcription system. Chem. Biol., 22, 169–174
Hemphill, J., Borchardt, E. K., Brown, K., Asokan, A. and Deiters, A. (2015) Optical control of CRISPR/Cas9 gene editing. J. Am. Chem. Soc., 137, 5642–5645
Lin, F., Dong, L., Wang, W., Liu, Y., Huang, W. and Cai, Z. (2016) An efficient light-inducible P53 expression system for inhibiting proliferation of bladder cancer cell. Int. J. Biol. Sci., 12, 1273–1278
Schiml, S., Fauser, F. and Puchta, H. (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J., 80, 1139–1150
Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., et al. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389
Slaymaker, I. M., Gao, L. Y., Zetsche, B., Scott, D. A., Yan,W. X. and Zhang, F. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science, 351, 84–88
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
Weber, W. and Fussenegger, M. (2012) Emerging biomedical applications of synthetic biology. Nat. Rev. Genet., 13, 21–35.
Xue, S., Yin, J. L., Shao, J. W., Yu, Y. H., Yang, L. F., Wang, Y. D., Xie, M. Q., Fussenegger, M. and Ye, H. F. (2016) A synthetic biology-inspired therapeutic strategy for targeting and treating hepatogenous diabetes. Mol. Ther., 443–455
Muller, K., Engesser, R., Metzger, S., Schulz, S., Kampf, M. M., Busacker, M., Steinberg, T., Tomakidi, P., Ehrbar, M., Nagy, F., et al. (2013) A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res., 41, e77
Motta-Mena, L. B., Reade, A., Mallory, M. J., Glantz, S., Weiner, O. D., Lynch, K. W. and Gardner, K. H. (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol., 10, 196–202
Müller, K., Zurbriggen, M. D. and Weber, W. (2014) Control of gene expression using a red-and far-red light-responsive bi-stable toggle switch. Nat. Protoc., 9, 622–632
Acknowledgements
This work was financially supported by the National Key Research and Development Program of China, Stem Cell and Translational Research (No. 2016YFA0100300), by the National Natural Science Foundation of China (Nos. 31522017, 31470834 and 31670869), by the Science and Technology Commission of Shanghai Municipality (Nos. 15QA1401500 and 14JC1401700), and by the Thousand Youth Talents Plan of China to H.Y.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, M., Yu, Y., Shao, J. et al. Engineering synthetic optogenetic networks for biomedical applications. Quant Biol 5, 111–123 (2017). https://doi.org/10.1007/s40484-017-0105-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40484-017-0105-6