Quantitative Biology

, Volume 5, Issue 1, pp 55–66 | Cite as

Bistability and oscillations in co-repressive synthetic microbial consortia

Research Article

Abstract

Background

Synthetic microbial consortia are conglomerations of genetically engineered microbes programmed to cooperatively bring about population-level phenotypes. By coordinating their activity, the constituent strains can display emergent behaviors that are difficult to engineer into isogenic populations. To do so, strains are engineered to communicate with one another through intercellular signaling pathways that depend on cell density.

Methods

Here, we used computational modeling to examine how the behavior of synthetic microbial consortia results from the interplay between population dynamics governed by cell growth and internal transcriptional dynamics governed by cell-cell signaling. Specifically, we examined a synthetic microbial consortium in which two strains each produce signals that down-regulate transcription in the other. Within a single strain this regulatory topology is called a “co-repressive toggle switch” and can lead to bistability.

Results

We found that in co-repressive synthetic microbial consortia the existence and stability of different states depend on population-level dynamics. As the two strains passively compete for space within the colony, their relative fractions fluctuate and thus alter the strengths of intercellular signals. These fluctuations drive the consortium to alternative equilibria. Additionally, if the growth rates of the strains depend on their transcriptional states, an additional feedback loop is created that can generate oscillations.

Conclusions

Our findings demonstrate that the dynamics of microbial consortia cannot be predicted from their regulatory topologies alone, but are also determined by interactions between the strains. Therefore, when designing synthetic microbial consortia that use intercellular signaling, one must account for growth variations caused by the production of protein.

Keywords

synthetic biology microbial consortia quorum sensing relaxation oscillations 

References

  1. 1.
    Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang, F., Carothers, J. and Keasling, J. D. (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol., 30, 354–359CrossRefPubMedGoogle Scholar
  3. 3.
    Masiello, C. A., Chen, Y., Gao, X., Liu, S., Cheng, H.-Y., Bennett, M. R., Rudgers, J. A., Wagner, D. S., Zygourakis, K. Z. and Silberg, J. J. (2013) Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ. Sci. Technol., 47, 11496–11503CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sprinzak, D. and Elowitz, M. B. (2005) Reconstruction of genetic circuits. Nature, 438, 443–448CrossRefPubMedGoogle Scholar
  5. 5.
    Wintermute, E. H. and Silver, P. A. (2010) Dynamics in the mixed microbial concourse. Genes Dev., 24, 2603–2614CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen, Y., Kim, J. K., Hirning, A. J., Josic, K. and Bennett, M. R. (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science, 349, 986–989CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    González, C., Ray, J. C., Manhart, M., Adams, R. M., Nevozhay, D., Morozov, A. V. and Balázsi, G. (2015) Stress-response balance drives the evolution of a network module and its host genome. Mol. Syst. Biol., 11, 827CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellen, J., Peeters, T., Hohmann, S., de Nadal, E., Posas, F. and Sole, R. (2011) Distributed biological computation with multicellular engineered networks. Nature, 469, 207–211CrossRefPubMedGoogle Scholar
  9. 9.
    Kong, W., Celik, V., Liao, C., Hua, Q. and Lu, T. (2014) Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresour. Bioprocess., 1, 24CrossRefGoogle Scholar
  10. 10.
    Kanakov, O., Laptyeva, T., Tsimring, L. and Ivanchenko, M. (2016) Spatiotemporal dynamics of distributed synthetic genetic circuits. Physica D, 318–319, 116–123CrossRefPubMedGoogle Scholar
  11. 11.
    Blanchard, A. E., Liao, C. and Lu, T. (2016) An ecological understanding of quorum sensing-controlled bacteriocin synthesis. Cell. Mol. Bioeng., 9, 443–454CrossRefGoogle Scholar
  12. 12.
    Tan, C., Marguet, P. and You, L. (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol., 5, 842–848CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. and Hwa, T. (2010) Interdependence of cell growth and gene expression: origins and consequences. Science, 330, 1099–1102CrossRefPubMedGoogle Scholar
  14. 14.
    Nevozhay, D., Adams, R. M., Van Itallie, E., Bennett, M. R. and Balá zsi, G. (2012) Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput. Biol., 8, e1002480CrossRefGoogle Scholar
  15. 15.
    Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia Coli. Nature, 403, 339–342CrossRefPubMedGoogle Scholar
  16. 16.
    Miller, M. B. and Bassler, B. L. (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol., 333, 1315–1319Google Scholar
  17. 17.
    Wu, F., Menn, D. J. and Wang, X. (2014) Quorum-sensing crosstalkdriven synthetic circuits: from unimodality to trimodality. Chem. Biol., 21, 1629–1638CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A., Levskaya, A., Marcotte, E. M., Voigt, C. A. and Ellington, A. D. (2009) A synthetic genetic edge detection program. Cell, 137, 1272–1281CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bennett, M. R. and Hasty, J. (2009) Overpowering the component problem. Nat. Biotechnol., 27, 450–451CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    You, L., Cox, R. S. III, Weiss, R. and Arnold, F. H. (2004) Programmed population control by cell-cell communication and regulated killing. Nature, 428, 868–871CrossRefPubMedGoogle Scholar
  21. 21.
    Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R. and You, L. (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol., 4, 187CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hek, G. (2010) Geometric singular perturbation theory in biological practice. J. Math. Biol., 60, 347–386CrossRefPubMedGoogle Scholar
  23. 23.
    Krupa, M. and Szmolyan, P. (2001) Relaxation oscillation and canard explosion. J. Differ. Equ., 174, 312–368CrossRefGoogle Scholar
  24. 24.
    Moran, P. A. P. (1958) Random processes in genetics. Math. Proc. Camb. Philos. Soc., 54, 60–71CrossRefGoogle Scholar
  25. 25.
    Nowak, M. A. (2006) Evolutionary Dynamics: Exploring the Equations of Life. Brighton: Harvard University PressGoogle Scholar
  26. 26.
    van der Pol, B. (1926) LXXXVIII. On “relaxation-oscillations”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 978–992CrossRefGoogle Scholar
  27. 27.
    Veliz-Cuba, A., Gupta, C., Bennett, M. R., Josic, K. and Ott, W. (2016) Effects of cell cycle noise on excitable gene circuits. Phys. Biol., 13, 066007CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUniversity of DaytonDaytonUSA
  3. 3.Department of MathematicsUniversity of HoustonHoustonUSA
  4. 4.Department of Biology and BiochemistryUniversity of HoustonHoustonUSA
  5. 5.Department of BiosciencesRice UniversityHoustonUSA
  6. 6.Department of BioengineeringRice UniversityHoustonUSA

Personalised recommendations