Advertisement

Quantitative Biology

, Volume 5, Issue 1, pp 76–89 | Cite as

Modeling information exchange between living and artificial cells

  • Keith C. Heyde
  • MaryJoe K. Rice
  • Sung-Ho Paek
  • Felicia Y. Scott
  • Ruihua Zhang
  • Warren C. Ruder
Research Article

Abstract

Background

The tools of synthetic biology have enabled researchers to explore multiple scientific phenomena by directly engineering signaling pathways within living cells and artificial protocells. Here, we explored the potential for engineered living cells themselves to assemble signaling pathways for non-living protocells. This analysis serves as a preliminary investigation into a potential origin of processes that may be utilized by complex living systems. Specifically, we suggest that if living cells can be engineered to direct the assembly of genetic signaling pathways from genetic biomaterials in their environment, then insight can be gained into how naturally occurring living systems might behave similarly.

Methods

To this end, we have modeled and simulated a system consisting of engineered cells that control the assembly of DNA monomers on microparticle scaffolds. These DNA monomers encode genetic circuits, and therefore, these microparticles can then be encapsulated with minimal transcription and translation systems to direct protocell phenotype. The modeled system relies on multiple previously established synthetic systems and then links these together to demonstrate system feasibility.

Results

In this specific model, engineered cells are induced to synthesize biotin, which competes with biotinylated, circuit-encoding DNA monomers for an avidinized-microparticle scaffold. We demonstrate that multiple synthetic motifs can be controlled in this way and can be tuned by manipulating parameters such as inducer and DNA concentrations.

Conclusions

We expect that this system will provide insight into the origin of living systems as well as serve as a tool for engineering living cells that assemble complex biomaterials in their environment.

Keywords

synthetic biology artificial cells biotin microparticles 

Notes

Acknowledgments

The authors gratefully acknowledge support from award FA9550-13-1-0108 from the Air Force Office of Scientific Research of the USA and award N00014-15-1-2502 from the Office of Naval Research of the USA. The authors additionally acknowledge support from the Institute for Critical Technology and Applied Science at Virginia Polytechnic Institute and State University, from the National Science Foundation Graduate Research Fellowship Program, award number 1607310, and from the Virginia Sea Grant Graduate Research Fellowship Program.

References

  1. 1.
    Ricardo, A. and Szostak, J. W. (2009) Origin of life on earth. Sci. Am., 301, 54–61CrossRefPubMedGoogle Scholar
  2. 2.
    Szostak, J. W. (2009) Origins of life: systems chemistry on early Earth. Nature, 459, 171–172CrossRefPubMedGoogle Scholar
  3. 3.
    Szostak, J. W., Bartel, D. P. and Luisi, P. L. (2001) Synthesizing life. Nature, 409, 387–390CrossRefPubMedGoogle Scholar
  4. 4.
    Adamala, K. P., Engelhart, A. E. and Szostak, J. W. (2016) Collaboration between primitive cell membranes and soluble catalysts. Nat. Commun., 7, 11041CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Engelhart, A. E., Adamala, K. P. and Szostak, J. W. (2016) A simple physical mechanism enables homeostasis in primitive cells. Nat. Chem., 8, 448–453CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329, 52–56CrossRefPubMedGoogle Scholar
  7. 7.
    Hutchison, C. A., Chuang, R. Y., Noskov, V. N., Assad-Garcia, N., Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas, B. J., Ma, L., et al. (2016) Design and synthesis of a minimal bacterial genome. Science, 351, aad6253CrossRefPubMedGoogle Scholar
  8. 8.
    Glass, J. I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M. R., Maruf, M., Hutchison C. A., Smith, H. O. and Venter, J. C. (2006) Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA, 103, 425–430CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang, R., Heyde, K. C., Scott, F. Y., Paek, S.-H.and Ruder, W. C. (2016) Programming surface chemistry with engineered cells. ACS Synth. Biol., 5, 936–941CrossRefPubMedGoogle Scholar
  10. 10.
    Chen, A. Y., Deng, Z., Billings, A. N., Seker, U. O. S., Lu, M. Y., Citorik, R. J., Zakeri, B. and Lu, T. K. (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater., 13, 515–523CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Botyanszki, Z., Tay, P. K. R., Nguyen, P. Q., Nussbaumer, M. G. and Joshi, N. S. (2015) Engineered catalytic biofilms: site-specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol. Bioeng., 112, 2016–2024CrossRefPubMedGoogle Scholar
  12. 12.
    Chen, A. Y., Zhong, C. and Lu, T. K. (2015) Engineering living functional materials. ACS Synth. Biol., 4, 8–11CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ridgley, D. M., Freedman, B. G., Lee, P. W. and Barone, J. R. (2014) Genetically encoded self-assembly of large amyloid fibers. Biomater. Sci., 2, 560–566CrossRefGoogle Scholar
  14. 14.
    Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342CrossRefPubMedGoogle Scholar
  15. 15.
    Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338CrossRefPubMedGoogle Scholar
  16. 16.
    Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199–1202CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Anderson, J. C., Voigt, C. A. and Arkin, A. P. (2007) Environmental signal integration by a modular AND gate. Mol. Syst. Biol., 3, 133CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ellis, T., Wang, X. and Collins, J. J. (2009) Diversity-based, modelguided construction of synthetic gene networks with predicted functions. Nat. Biotechnol., 27, 465–471CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A., Ellington, A. D., Marcotte, E. M., et al. (2005) Synthetic biology: engineering Escherichia coli to see light. Nature, 438, 441–442CrossRefPubMedGoogle Scholar
  20. 20.
    Bashor, C. J., Helman, N. C., Yan, S. and Lim, W. A. (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science, 319, 1539–1543CrossRefPubMedGoogle Scholar
  21. 21.
    Kramer, B. P., Viretta, A. U., Baba, M. D.-E., Aubel, D., Weber, W. and Fussenegger, M. (2004) An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol., 22, 867–870CrossRefPubMedGoogle Scholar
  22. 22.
    Blake, W. J., Balázsi, G., Kohanski, M. A., Isaacs, F. J., Murphy, K. F., Kuang, Y., Cantor, C. R., Walt, D. R. and Collins, J. J. (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell, 24, 853–865CrossRefPubMedGoogle Scholar
  23. 23.
    Eldar, A. and Elowitz, M. B. (2010) Functional roles for noise in genetic circuits. Nature, 467, 167–173CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Guet, C. C., Elowitz, M. B., Hsing, W. and Leibler, S. (2002) Combinatorial synthesis of genetic networks. Science, 296, 1466–1470CrossRefPubMedGoogle Scholar
  25. 25.
    Kærn, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451–464CrossRefPubMedGoogle Scholar
  26. 26.
    Murphy, K. F., Adams, R. M., Wang, X., Balázsi, G. and Collins, J. J. (2010) Tuning and controlling gene expression noise in synthetic gene networks. Nucleic Acids Res., 38, 2712–2726CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Balázsi, G., van Oudenaarden, A. and Collins, J. J. (2011) Cellular decision making and biological noise: from microbes to mammals. Cell, 144, 910–925CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186CrossRefPubMedGoogle Scholar
  29. 29.
    Karzbrun, E., Tayar, A. M., Noireaux, V. and Bar-Ziv, R. H. (2014) Programmable on-chip DNA compartments as artificial cells. Science, 345, 829–832CrossRefPubMedGoogle Scholar
  30. 30.
    Noireaux, V., Maeda, Y. T. and Libchaber, A. (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc. Natl. Acad. Sci. USA, 108, 3473–3480CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K. and Ueda, T. (2001) Cell-free translation reconstituted with purified components. Nat. Biotechnol., 19, 751–755CrossRefPubMedGoogle Scholar
  32. 32.
    Tan, C., Saurabh, S., Bruchez, M. P., Schwartz, R. and Leduc, P. (2013) Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nat. Nanotechnol., 8, 602–608CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. and Salemme, F. R. (1989) Structural origins of high-affinity biotin binding to streptavidin. Science, 243, 85–88CrossRefPubMedGoogle Scholar
  34. 34.
    Green, N. M. (1963) Avidin. 3. The nature of the biotin-binding site. Biochem. J., 89, 599–609CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huang, S.-C., Stump, M. D., Weiss, R. and Caldwell, K. D. (1996) Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size. Anal. Biochem., 237, 115–122CrossRefPubMedGoogle Scholar
  36. 36.
    Noireaux, V., Bar-Ziv, R. and Libchaber, A. (2003) Principles of cellfree genetic circuit assembly. Proc. Natl. Acad. Sci. USA, 100, 12672–12677CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Daube, S. S. and Bar-Ziv, R. H. (2013) Protein nanomachines assembly modes: cell-free expression and biochip perspectives.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5, 613–628CrossRefGoogle Scholar
  38. 38.
    Groisman, A., Lobo, C., Cho, H., Campbell, J. K., Dufour, Y. S., Stevens, A. M. and Levchenko, A. (2005) A microfluidic chemostat for experiments with bacterial and yeast cells. Nat. Methods, 2, 685–689CrossRefPubMedGoogle Scholar
  39. 39.
    Hol, F. J. H. and Dekker, C. (2014) Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science, 346, 1251821CrossRefPubMedGoogle Scholar
  40. 40.
    Sun, Z. Z., Hayes, C. A., Shin, J., Caschera, F., Murray, R. M. and Noireaux, V. (2013) Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J. Vis. Exp., doi: 10.3791/50762Google Scholar
  41. 41.
    Lutz, R. and Bujard, H. (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res., 25, 1203–1210CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sanyal, I., Cohen, G. and Flint, D. H. (1994) Biotin synthase: purification, characterization as a [2Fe-2S]cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry, 33, 3625–3631CrossRefPubMedGoogle Scholar
  43. 43.
    Brophy, J. A. N. and Voigt, C. A. (2014) Principles of genetic circuit design. Nat. Methods, 11, 508–520CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Garcia-Ojalvo, J., Elowitz, M. B. and Strogatz, S. H. (2004) Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA, 101, 10955–10960CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Heyde, K. C. and Ruder, W. C. (2015) Exploring host-microbiome interactions using an in silico model of biomimetic robots and engineered living cells. Sci. Rep., 5, 11988CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Anderson, J. C., Voigt, C. A. and Arkin, A. P. (2007) Environmental signal integration by a modular AND gate. Mol. Syst. Biol., 3, 133CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cameron, D. E. and Collins, J. J. (2014) Tunable protein degradation in bacteria. Nat. Biotechnol., 32, 1276–1281CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342CrossRefPubMedGoogle Scholar
  49. 49.
    Johnson, K. A. and Goody, R. S. (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry, 50, 8264–8269CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    González, M., Bagatolli, L. A., Echabe, I., Arrondo, J. L. R., Argarañ a, C. E., Cantor, C. R. and Fidelio, G. D. (1997) Interaction of biotin with streptavidin. Thermostability and conformational changes upon binding. J. Biol. Chem., 272, 11288–11294PubMedGoogle Scholar
  51. 51.
    Schwarz-Schilling, M., Aufinger, L., Mückl, A. and Simmel, F. C. (2016) Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integr. Biol., 8, 564–570CrossRefGoogle Scholar
  52. 52.
    Stögbauer, T., Windhager, L., Zimmer, R. and Rädler, J. O. (2012) Experiment and mathematical modeling of gene expression dynamics in a cell-free system. Integr. Biol., 4, 494–501CrossRefGoogle Scholar
  53. 53.
    Brenner, K., You, L. and Arnold, F. H. (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol., 26, 483–489CrossRefPubMedGoogle Scholar
  54. 54.
    Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N.and Silver, P. A. (2015) Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol., 36, 40–49CrossRefPubMedGoogle Scholar
  55. 55.
    Wintermute, E. H. and Silver, P. A. (2010) Dynamics in the mixed microbial concourse. Genes Dev., 24, 2603–2614CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R.and You, L. (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol., 4, 187CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Heyde, K. C., Gallagher, P. W. and Ruder, W. C. (2016) Bioinspired decision architectures containing host and microbiome processing units. Bioinspir. Biomim., 11, 056017CrossRefPubMedGoogle Scholar
  58. 58.
    Tran, H., Oliveira, S. M. D., Goncalves, N. and Ribeiro, A. S. (2015) Kinetics of the cellular intake of a gene expression inducer at high concentrations. Mol. Biosyst., 11, 2579–2587CrossRefPubMedGoogle Scholar
  59. 59.
    Xu, H., Moraitis, M., Reedstrom, R. J. and Matthews, K. S. (1998) Kinetic and thermodynamic studies of purine repressor binding to corepressor and operator DNA. J. Biol. Chem., 273, 8958–8964CrossRefPubMedGoogle Scholar
  60. 60.
    Politi, N., Pasotti, L., Zucca, S., Casanova, M., Micoli, G., Cusella De Angelis, M. G. and Magni, P. (2014) Half-life measurements of chemical inducers for recombinant gene expression. J. Biol. Eng., 8, 5CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  • Keith C. Heyde
    • 1
  • MaryJoe K. Rice
    • 2
  • Sung-Ho Paek
    • 3
  • Felicia Y. Scott
    • 3
  • Ruihua Zhang
    • 3
  • Warren C. Ruder
    • 4
  1. 1.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Mechanical EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Department of Biological Systems EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.Department of BioengineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations