Abstract
Background
Recently we proposed a quantum theory on the conformational change of biomolecule, deduced several equations on protein folding rate from the first principles and discussed the experimental tests of the theory. The article is a review of these works.
Methods
Based on the general equation of the conformation-transitional rate several theoretical results are deduced and compared with experimental data through bioinformatics methods.
Results
The temperature dependence and the denaturant concentration dependence of the protein folding rate are deduced and compared with experimental data. The quantitative relation between protein folding rate and torsional mode number (or chain length) is deduced and the obtained formula can be applied to RNA folding as well. The quantum transition theory of two-state protein is successfully generalized to multi-state protein folding. Then, how to make direct experimental tests on the quantum property of the conformational transition of biomolecule is discussed, which includes the study of protein photo-folding and the observation of the fluctuation of the fluorescence intensity emitted from the protein folding/unfolding event. Finally, the potential applications of the present quantum folding theory to molecular biological problems are sketched in two examples: the glucose transport across membrane and the induced pluripotency in stem cell.
Conclusions
The above results show that the quantum mechanics provides a unifying and logically simple theoretical starting point in studying the conformational change of biological macromolecules. The far-reaching results in practical application of the theory are expected.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Luo, L. F. (2014) Quantum theory on protein folding. Sci. China Phys. Mech. Astron., 57, 458–468
Luo, L. F. (2011) Protein Folding as a quantum transition between conformational states. Front. Phys., 6, 133–140
Lv, J. and Luo, L. (2014) Statistical analyses of protein folding rates from the view of quantum transition. Sci. China Life Sci., 57, 1197–1212
Luo, L. F. and Lv, J. (2015) Quantitative relations in protein and RNA folding deduced from quantum theory. bioRxiv: http://dx.doi.org/10.1101/021782
Luo, L. F. (2015) A model on avian genome evolution. bioRxiv: http:// dx.doi.org/10.1101/034710; arXiv: 1411.2205, http://arxiv.org/abs/1411.2205
Hameroff, S. and Penrose, R. (2014) Consciousness in the universe: a review of the ‘Orch OR’ theory. Phys. Life Rev., 11, 39–78
Fisher, M. P. A. (2015) Quantum cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys., 362, 593–602
Melkikh, A. V. (2014) Congenital programs of the behavior and nontrivial quantum effects in the neurons work. Biosystems, 119, 10–19
Gauger, E. M., Rieper, E., Morton, J. J. L., Benjamin, S. C. and Vedral, V. (2011) Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett., 106, 040503
Eyring, H., Lin, S. H. and Lin, M. (1980) Basic Chemical Kinetics. New York: Wiley
Maxwell, K. L., Wildes, D., Zarrine-Afsar, A., De Los Rios, M. A., Brown, A. G., Friel, C. T., Hedberg, L., Horng, J. C., Bona, D., Miller, E. J., et al. (2005) Protein folding: defining a “standard” set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci., 14, 602–616
Nguyen, H., Jager, M., Moretto, A., Gruebele, M. and Kelly, J. W. (2003) Tuning the free-energy landscape of a W Wdomain by temperature, mutation, and truncation. Proc. Natl. Acad. Sci. USA, 100, 3948–3953
Ghosh, K., Ozkan, S. B. and Dill, K. A. (2007) The ultimate speed limit to protein folding is conformational searching. J. Am. Chem. Soc., 129, 11920–11927
Dimitriadis, G., Drysdale, A., Myers, J. K., Arora, P., Radford, S. E., Oas, T. G. and Smith, D. A. (2004) Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proc. Natl. Acad. Sci. USA, 101, 3809–3814
Kuhlman, B., Luisi, D. L., Evans, P. A. and Raleigh, D. P. (1998) Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9. J. Mol. Biol., 284, 1661–1670
Mayor, U., Johnson, C. M., Daggett, V. and Fersht, A. R. (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. USA, 97, 13518–13522
Manyusa, S. and Whitford, D. (1999) Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements. Biochemistry, 38, 9533–9540
Bunagan, M. R., Yang, X., Saven, J. G. and Gai, F. (2006) Ultrafast folding of a computationally designed Trp-cage mutant: Trp2-cage. J. Phys. Chem. B, 110, 3759–3763
Qiu, L., Pabit, S. A., Roitberg, A. E. and Hagen, S. J. (2002) Smaller and faster: the 20-residue Trp-cage protein folds in 4 micros. J. Am. Chem. Soc., 124, 12952–12953
Yang, W. Y. and Gruebele, M. (2004) Rate-temperature relationships in l-repressor fragment l 6-85 folding. Biochemistry, 43, 13018–13025
Jäger, M., Nguyen, H., Crane, J. C., Kelly, J. W. and Gruebele, M. (2001) The folding mechanism of a beta-sheet: theWWdomain. J. Mol. Biol., 311, 373–393
Wang, T., Zhu, Y. J. and Gai, F. (2004) Folding of a three-helix bundle at the folding speed limit. J. Phys. Chem. B, 108, 3694–3697
Zhu, Y., Alonso, D. O., Maki, K., Huang, C. Y., Lahr, S. J., Daggett, V., Roder, H., DeGrado, W. F. and Gai, F. (2003) Ultrafast folding of a3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA, 100, 15486–15491
Spector, S. and Raleigh, D. P. (1999) Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol., 293, 763–768
Uversky, V. N. (2013) Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta, 1834, 932–951
Bonetti, D., Toto, A., Giri, R., Morrone, A., Sanfelice, D., Pastore, A., Temussi, P., Gianni, S. and Brunori, M. (2014) The kinetics of folding of frataxin. Phys. Chem. Chem. Phys., 16, 6391–6397
Garbuzynskiy, S. O., Ivankov, D. N., Bogatyreva, N. S. and Finkelstein, A. V. (2013) Golden triangle for folding rates of globular proteins. Proc. Natl. Acad. Sci. USA, 110, 147–150
Thirumalai, D. and Hyeon, C. (2005) RNA and protein folding: common themes and variations. Biochemistry, 44, 4957–4970
Woodson, S. A. (2010) Compact intermediates in RNA folding. Annu. Rev. Biophys., 39, 61–77
Hyeon, C. and Thirumalai, D. (2012) Chain length determines the folding rates of RNA. Biophys. J., 102, L11–L13
Kamagata, K., Arai, M. and Kuwajima, K. (2004) Unification of the folding mechanisms of non-two-state and two-state proteins. J. Mol. Biol., 339, 951–965
Zhang, Y. and Luo, L. (2011) The dynamical contact order: protein folding rate parameters based on quantum conformational transitions. Sci. China Life Sci., 54, 386–392
Cavagnero, S., Dyson, H. J. and Wright, P. E. (1999) Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin. J. Mol. Biol., 285, 269–282
Golbik, R., Zahn, R., Harding, S. E. and Fersht, A. R. (1998) Thermodynamic stability and folding of GroEL minichaperones. J. Mol. Biol., 276, 505–515
Banachewicz, W., Johnson, C. M. and Fersht, A. R. (2011) Folding of the Pit1 homeodomain near the speed limit. Proc. Natl. Acad. Sci. USA, 108, 569–573
Marianayagam, N. J., Khan, F., Male, L. and Jackson, S. E. (2002) Fast folding of a four-helical bundle protein. J. Am. Chem. Soc., 124, 9744–9750
Löw, C., Weininger, U., Zeeb, M., Zhang, W., Laue, E. D., Schmid, F. X. and Balbach, J. (2007) Folding mechanism of an ankyrin repeat protein: scaffold and active site formation of human CDK inhibitor p19 (INK4d). J. Mol. Biol., 373, 219–231
Calosci, N., Chi, C. N., Richter, B., Camilloni, C., Engström, A., Eklund, L., Travaglini-Allocatelli, C., Gianni, S., Vendruscolo, M. and Jemth, P. (2008) Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins. Proc. Natl. Acad. Sci. USA, 105, 19241–19246
Schreiber, G. and Fersht, A. R. (1993) The refolding of cis-and transpeptidylprolyl isomers of barstar. Biochemistry, 32, 11195–11203
Burns, L. L., Dalessio, P. M. and Ropson, I. J. (1998) Folding mechanism of three structurally similar beta-sheet proteins. Proteins, 33, 107–118
Dalessio, P. M. and Ropson, I. J. (2000) Beta-sheet proteins with nearly identical structures have different folding intermediates. Biochemistry, 39, 860–871
Gianni, S., Guydosh, N. R., Khan, F., Caldas, T. D., Mayor, U., White, G. W., DeMarco, M. L., Daggett, V. and Fersht, A. R. (2003) Unifying features in protein-folding mechanisms. Proc. Natl. Acad. Sci. USA, 100, 13286–13291
Gianni, S., Calosci, N., Aelen, J. M., Vuister, G. W., Brunori, M. and Travaglini-Allocatelli, C. (2005) Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Eng. Des. Sel., 18, 389–395
Calloni, G., Taddei, N., Plaxco, K. W., Ramponi, G., Stefani, M. and Chiti, F. (2003) Comparison of the folding processes of distantly related proteins. Importance of hydrophobic content in folding. J. Mol. Biol., 330, 577–591
Liu, C., Gaspar, J. A., Wong, H. J. and Meiering, E. M. (2002) Conserved and nonconserved features of the folding pathway of hisactophilin, a beta-trefoil protein. Protein Sci., 11, 669–679
Parker, M. J., Dempsey, C. E., Lorch, M. and Clarke, A. R. (1997) Acquisition of native beta-strand topology during the rapid collapse phase of protein folding. Biochemistry, 36, 13396–13405
Forsyth, W. R. and Matthews, C. R. (2002) Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta (alpha))(8) barrels. J. Mol. Biol., 320, 1119–1133
Maki, K., Cheng, H., Dolgikh, D. A., Shastry, M. C. and Roder, H. (2004) Early events during folding of wild-type staphylococcal nuclease and a single-tryptophan variant studied by ultrarapid mixing. J. Mol. Biol., 338, 383–400
Parker, M. J., Spencer, J., Jackson, G. S., Burston, S. G., Hosszu, L. L., Craven, C. J., Waltho, J. P. and Clarke, A. R. (1996) Domain behavior during the folding of a thermostable phosphoglycerate kinase. Biochemistry, 35, 15740–15752
Parker, M. J., Spencer, J. and Clarke, A. R. (1995) An integrated kinetic analysis of intermediates and transition states in protein folding reactions. J. Mol. Biol., 253, 771–786
Ogasahara, K. and Yutani, K. (1994) Unfolding-refolding kinetics of the tryptophan synthase alpha subunit by CD and fluorescence measurements. J. Mol. Biol., 236, 1227–1240
Jennings, P. A., Finn, B. E., Jones, B. E. and Matthews, C. R. (1993) A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry, 32, 3783–3789
Matouschek, A., Kellis, J. T. Jr, Serrano, L., Bycroft, M. and Fersht, A. R. (1990) Transient folding intermediates characterized by protein engineering. Nature, 346, 440–445
Schymkowitz, J. W., Rousseau, F., Irvine, L. R. and Itzhaki, L. S. (2000) The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping. Structure, 8, 89–100
Teilum, K., Thormann, T., Caterer, N. R., Poulsen, H. I., Jensen, P. H., Knudsen, J., Kragelund, B. B. and Poulsen, F. M. (2005) Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins, 59, 80–90
Fowler, S. B. and Clarke, J. (2001) Mapping the folding pathway of an immunoglobulin domain: structural detail from Phi value analysis and movement of the transition state. Structure, 9, 355–366
Cota, E. and Clarke, J. (2000) Folding of beta-sandwich proteins: threestate transition of a fibronectin type III module. Protein Sci., 9, 112–120
Jemth, P., Day, R., Gianni, S., Khan, F., Allen, M., Daggett, V. and Fersht, A. R. (2005) The structure of the major transition state for folding of an F Fdomain from experiment and simulation. J. Mol. Biol., 350, 363–378
Melnik, B. S., Marchenkov, V. V., Evdokimov, S. R., Samatova, E. N. and Kotova, N. V. (2008) Multy-state protein: determination of carbonic anhydrase free-energy landscape. Biochem. Biophys. Res. Commun., 369, 701–706
Tang, K. S., Guralnick, B. J.,Wang,W. K., Fersht, A. R. and Itzhaki, L. S. (1999) Stability and folding of the tumour suppressor protein p16. J. Mol. Biol., 285, 1869–1886
Laurents, D. V., Corrales, S., Elías-Arnanz, M., Sevilla, P., Rico, M. and Padmanabhan, S. (2000) Folding kinetics of phage 434 Cro protein. Biochemistry, 39, 13963–13973
Parker, M. J. and Marqusee, S. (1999) The cooperativity of burst phase reactions explored. J. Mol. Biol., 293, 1195–1210
Lowe, A. R. and Itzhaki, L. S. (2007) Rational redesign of the folding pathway of a modular protein. Proc. Natl. Acad. Sci. USA, 104, 2679–2684
Choe, S. E., Matsudaira, P. T., Osterhout, J., Wagner, G. and Shakhnovich, E. I. (1998) Folding kinetics of villin 14T, a protein domain with a central beta-sheet and two hydrophobic cores. Biochemistry, 37, 14508–14518
Muñoz, V., Lopez, E. M., Jager, M. and Serrano, L. (1994) Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. kinetic analysis of the inverse hydrophobic effect. Biochemistry, 33, 5858–5866
Stagg, L., Samiotakis, A., Homouz, D., Cheung, M. S. and Wittung-Stafshede, P. (2010) Residue-specific analysis of frustration in the folding landscape of repeat beta/alpha protein apoflavodoxin. J. Mol. Biol., 396, 75–89
Ratcliff, K., Corn, J. and Marqusee, S. (2009) Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry, 48, 5890–5898
Luo, L. (2012) Protein photo-folding and quantum folding theory. Sci. China Life Sci., 55, 533–541
Fang, C., Frontiera, R. R., Tran, R., Mathies, R. A. and Mathies, R. A. (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature, 462, 200–204
Zurek, W. H. (2002) Decoherence and the transition from quantum to classical–Revisited. In Quantum Decoherence. 16–31. Birkhäuser Basel, Doi:10.1007/978-3-7643-7808-0_1
Tegmark, M. (2000) Importance of quantum decoherence in brain processes. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 61, 4194–4206
Deng, D., Xu, C., Sun, P., Wu, J., Yan, C., Hu, M. and Yan, N. (2014) Crystal structure of the human glucose transporter GLUT1. Nature, 510, 121–125
Luo, L. F. (2014) Quantum theory on glucose transport across membrane. arXiv: 1407.7198 at http://arxiv.org/abs/1407.7198
Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., et al. (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654
Luo, L. F. (2015) From chemically to physically induced pluripotency in stem cell. arXiv: 1506.02053 at http://arxiv.org/abs/1506.02053
Acknowledgements
Authors are indebted to Drs. Zhao Judong, Zhang Ying and Zhang Lirong for their numerous discussions and Dr. Bao Yulai for his help in literature searching. The work is partly supported by the Inner Mongolia Autonomous Region Natural Science Foundation (Nos. 2015MS0331 and 2016MS0306).
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Luo, L., Lv, J. Quantum conformational transition in biological macromolecule. Quant Biol 5, 143–158 (2017). https://doi.org/10.1007/s40484-016-0087-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40484-016-0087-9