Advertisement

Quantitative Biology

, Volume 5, Issue 2, pp 143–158 | Cite as

Quantum conformational transition in biological macromolecule

  • Liaofu Luo
  • Jun Lv
Review

Abstract

Background

Recently we proposed a quantum theory on the conformational change of biomolecule, deduced several equations on protein folding rate from the first principles and discussed the experimental tests of the theory. The article is a review of these works.

Methods

Based on the general equation of the conformation-transitional rate several theoretical results are deduced and compared with experimental data through bioinformatics methods.

Results

The temperature dependence and the denaturant concentration dependence of the protein folding rate are deduced and compared with experimental data. The quantitative relation between protein folding rate and torsional mode number (or chain length) is deduced and the obtained formula can be applied to RNA folding as well. The quantum transition theory of two-state protein is successfully generalized to multi-state protein folding. Then, how to make direct experimental tests on the quantum property of the conformational transition of biomolecule is discussed, which includes the study of protein photo-folding and the observation of the fluctuation of the fluorescence intensity emitted from the protein folding/unfolding event. Finally, the potential applications of the present quantum folding theory to molecular biological problems are sketched in two examples: the glucose transport across membrane and the induced pluripotency in stem cell.

Conclusions

The above results show that the quantum mechanics provides a unifying and logically simple theoretical starting point in studying the conformational change of biological macromolecules. The far-reaching results in practical application of the theory are expected.

Keywords

conformational change quantum transition protein folding RNA folding temperature dependence 

Notes

Acknowledgements

Authors are indebted to Drs. Zhao Judong, Zhang Ying and Zhang Lirong for their numerous discussions and Dr. Bao Yulai for his help in literature searching. The work is partly supported by the Inner Mongolia Autonomous Region Natural Science Foundation (Nos. 2015MS0331 and 2016MS0306).

Supplementary material

40484_2016_87_MOESM1_ESM.pdf (817 kb)
Quantum conformational transition in biological macromolecule

References

  1. 1.
    Luo, L. F. (2014) Quantum theory on protein folding. Sci. China Phys. Mech. Astron., 57, 458–468CrossRefGoogle Scholar
  2. 2.
    Luo, L. F. (2011) Protein Folding as a quantum transition between conformational states. Front. Phys., 6, 133–140CrossRefGoogle Scholar
  3. 3.
    Lv, J. and Luo, L. (2014) Statistical analyses of protein folding rates from the view of quantum transition. Sci. China Life Sci., 57, 1197–1212CrossRefPubMedGoogle Scholar
  4. 4.
    Luo, L. F. and Lv, J. (2015) Quantitative relations in protein and RNA folding deduced from quantum theory. bioRxiv: http://dx.doi.org/10.1101/021782Google Scholar
  5. 5.
    Luo, L. F. (2015) A model on avian genome evolution. bioRxiv: http:// dx.doi.org/10.1101/034710; arXiv: 1411.2205, http://arxiv.org/abs/1411.2205Google Scholar
  6. 6.
    Hameroff, S. and Penrose, R. (2014) Consciousness in the universe: a review of the ‘Orch OR’ theory. Phys. Life Rev., 11, 39–78CrossRefPubMedGoogle Scholar
  7. 7.
    Fisher, M. P. A. (2015) Quantum cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys., 362, 593–602CrossRefGoogle Scholar
  8. 8.
    Melkikh, A. V. (2014) Congenital programs of the behavior and nontrivial quantum effects in the neurons work. Biosystems, 119, 10–19CrossRefPubMedGoogle Scholar
  9. 9.
    Gauger, E. M., Rieper, E., Morton, J. J. L., Benjamin, S. C. and Vedral, V. (2011) Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett., 106, 040503CrossRefPubMedGoogle Scholar
  10. 10.
    Eyring, H., Lin, S. H. and Lin, M. (1980) Basic Chemical Kinetics. New York: WileyGoogle Scholar
  11. 11.
    Maxwell, K. L., Wildes, D., Zarrine-Afsar, A., De Los Rios, M. A., Brown, A. G., Friel, C. T., Hedberg, L., Horng, J. C., Bona, D., Miller, E. J., et al. (2005) Protein folding: defining a “standard” set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci., 14, 602–616CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nguyen, H., Jager, M., Moretto, A., Gruebele, M. and Kelly, J. W. (2003) Tuning the free-energy landscape of a W Wdomain by temperature, mutation, and truncation. Proc. Natl. Acad. Sci. USA, 100, 3948–3953CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ghosh, K., Ozkan, S. B. and Dill, K. A. (2007) The ultimate speed limit to protein folding is conformational searching. J. Am. Chem. Soc., 129, 11920–11927CrossRefPubMedGoogle Scholar
  14. 14.
    Dimitriadis, G., Drysdale, A., Myers, J. K., Arora, P., Radford, S. E., Oas, T. G. and Smith, D. A. (2004) Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proc. Natl. Acad. Sci. USA, 101, 3809–3814CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kuhlman, B., Luisi, D. L., Evans, P. A. and Raleigh, D. P. (1998) Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9. J. Mol. Biol., 284, 1661–1670CrossRefPubMedGoogle Scholar
  16. 16.
    Mayor, U., Johnson, C. M., Daggett, V. and Fersht, A. R. (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. USA, 97, 13518–13522CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Manyusa, S. and Whitford, D. (1999) Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements. Biochemistry, 38, 9533–9540CrossRefPubMedGoogle Scholar
  18. 18.
    Bunagan, M. R., Yang, X., Saven, J. G. and Gai, F. (2006) Ultrafast folding of a computationally designed Trp-cage mutant: Trp2-cage. J. Phys. Chem. B, 110, 3759–3763CrossRefPubMedGoogle Scholar
  19. 19.
    Qiu, L., Pabit, S. A., Roitberg, A. E. and Hagen, S. J. (2002) Smaller and faster: the 20-residue Trp-cage protein folds in 4 micros. J. Am. Chem. Soc., 124, 12952–12953CrossRefPubMedGoogle Scholar
  20. 20.
    Yang, W. Y. and Gruebele, M. (2004) Rate-temperature relationships in l-repressor fragment l 6-85 folding. Biochemistry, 43, 13018–13025CrossRefPubMedGoogle Scholar
  21. 21.
    Jäger, M., Nguyen, H., Crane, J. C., Kelly, J. W. and Gruebele, M. (2001) The folding mechanism of a beta-sheet: theWWdomain. J. Mol. Biol., 311, 373–393CrossRefPubMedGoogle Scholar
  22. 22.
    Wang, T., Zhu, Y. J. and Gai, F. (2004) Folding of a three-helix bundle at the folding speed limit. J. Phys. Chem. B, 108, 3694–3697CrossRefGoogle Scholar
  23. 23.
    Zhu, Y., Alonso, D. O., Maki, K., Huang, C. Y., Lahr, S. J., Daggett, V., Roder, H., DeGrado, W. F. and Gai, F. (2003) Ultrafast folding of a3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA, 100, 15486–15491CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Spector, S. and Raleigh, D. P. (1999) Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol., 293, 763–768CrossRefPubMedGoogle Scholar
  25. 25.
    Uversky, V. N. (2013) Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta, 1834, 932–951CrossRefPubMedGoogle Scholar
  26. 26.
    Bonetti, D., Toto, A., Giri, R., Morrone, A., Sanfelice, D., Pastore, A., Temussi, P., Gianni, S. and Brunori, M. (2014) The kinetics of folding of frataxin. Phys. Chem. Chem. Phys., 16, 6391–6397CrossRefPubMedGoogle Scholar
  27. 27.
    Garbuzynskiy, S. O., Ivankov, D. N., Bogatyreva, N. S. and Finkelstein, A. V. (2013) Golden triangle for folding rates of globular proteins. Proc. Natl. Acad. Sci. USA, 110, 147–150CrossRefPubMedGoogle Scholar
  28. 28.
    Thirumalai, D. and Hyeon, C. (2005) RNA and protein folding: common themes and variations. Biochemistry, 44, 4957–4970CrossRefPubMedGoogle Scholar
  29. 29.
    Woodson, S. A. (2010) Compact intermediates in RNA folding. Annu. Rev. Biophys., 39, 61–77CrossRefPubMedGoogle Scholar
  30. 30.
    Hyeon, C. and Thirumalai, D. (2012) Chain length determines the folding rates of RNA. Biophys. J., 102, L11–L13CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kamagata, K., Arai, M. and Kuwajima, K. (2004) Unification of the folding mechanisms of non-two-state and two-state proteins. J. Mol. Biol., 339, 951–965CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang, Y. and Luo, L. (2011) The dynamical contact order: protein folding rate parameters based on quantum conformational transitions. Sci. China Life Sci., 54, 386–392CrossRefPubMedGoogle Scholar
  33. 33.
    Cavagnero, S., Dyson, H. J. and Wright, P. E. (1999) Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin. J. Mol. Biol., 285, 269–282CrossRefPubMedGoogle Scholar
  34. 34.
    Golbik, R., Zahn, R., Harding, S. E. and Fersht, A. R. (1998) Thermodynamic stability and folding of GroEL minichaperones. J. Mol. Biol., 276, 505–515CrossRefPubMedGoogle Scholar
  35. 35.
    Banachewicz, W., Johnson, C. M. and Fersht, A. R. (2011) Folding of the Pit1 homeodomain near the speed limit. Proc. Natl. Acad. Sci. USA, 108, 569–573CrossRefPubMedGoogle Scholar
  36. 36.
    Marianayagam, N. J., Khan, F., Male, L. and Jackson, S. E. (2002) Fast folding of a four-helical bundle protein. J. Am. Chem. Soc., 124, 9744–9750CrossRefPubMedGoogle Scholar
  37. 37.
    Löw, C., Weininger, U., Zeeb, M., Zhang, W., Laue, E. D., Schmid, F. X. and Balbach, J. (2007) Folding mechanism of an ankyrin repeat protein: scaffold and active site formation of human CDK inhibitor p19 (INK4d). J. Mol. Biol., 373, 219–231CrossRefPubMedGoogle Scholar
  38. 38.
    Calosci, N., Chi, C. N., Richter, B., Camilloni, C., Engström, A., Eklund, L., Travaglini-Allocatelli, C., Gianni, S., Vendruscolo, M. and Jemth, P. (2008) Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins. Proc. Natl. Acad. Sci. USA, 105, 19241–19246CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schreiber, G. and Fersht, A. R. (1993) The refolding of cis-and transpeptidylprolyl isomers of barstar. Biochemistry, 32, 11195–11203CrossRefPubMedGoogle Scholar
  40. 40.
    Burns, L. L., Dalessio, P. M. and Ropson, I. J. (1998) Folding mechanism of three structurally similar beta-sheet proteins. Proteins, 33, 107–118CrossRefPubMedGoogle Scholar
  41. 41.
    Dalessio, P. M. and Ropson, I. J. (2000) Beta-sheet proteins with nearly identical structures have different folding intermediates. Biochemistry, 39, 860–871CrossRefPubMedGoogle Scholar
  42. 42.
    Gianni, S., Guydosh, N. R., Khan, F., Caldas, T. D., Mayor, U., White, G. W., DeMarco, M. L., Daggett, V. and Fersht, A. R. (2003) Unifying features in protein-folding mechanisms. Proc. Natl. Acad. Sci. USA, 100, 13286–13291CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gianni, S., Calosci, N., Aelen, J. M., Vuister, G. W., Brunori, M. and Travaglini-Allocatelli, C. (2005) Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Eng. Des. Sel., 18, 389–395CrossRefPubMedGoogle Scholar
  44. 44.
    Calloni, G., Taddei, N., Plaxco, K. W., Ramponi, G., Stefani, M. and Chiti, F. (2003) Comparison of the folding processes of distantly related proteins. Importance of hydrophobic content in folding. J. Mol. Biol., 330, 577–591PubMedGoogle Scholar
  45. 45.
    Liu, C., Gaspar, J. A., Wong, H. J. and Meiering, E. M. (2002) Conserved and nonconserved features of the folding pathway of hisactophilin, a beta-trefoil protein. Protein Sci., 11, 669–679CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Parker, M. J., Dempsey, C. E., Lorch, M. and Clarke, A. R. (1997) Acquisition of native beta-strand topology during the rapid collapse phase of protein folding. Biochemistry, 36, 13396–13405CrossRefPubMedGoogle Scholar
  47. 47.
    Forsyth, W. R. and Matthews, C. R. (2002) Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta (alpha))(8) barrels. J. Mol. Biol., 320, 1119–1133CrossRefPubMedGoogle Scholar
  48. 48.
    Maki, K., Cheng, H., Dolgikh, D. A., Shastry, M. C. and Roder, H. (2004) Early events during folding of wild-type staphylococcal nuclease and a single-tryptophan variant studied by ultrarapid mixing. J. Mol. Biol., 338, 383–400CrossRefPubMedGoogle Scholar
  49. 49.
    Parker, M. J., Spencer, J., Jackson, G. S., Burston, S. G., Hosszu, L. L., Craven, C. J., Waltho, J. P. and Clarke, A. R. (1996) Domain behavior during the folding of a thermostable phosphoglycerate kinase. Biochemistry, 35, 15740–15752CrossRefPubMedGoogle Scholar
  50. 50.
    Parker, M. J., Spencer, J. and Clarke, A. R. (1995) An integrated kinetic analysis of intermediates and transition states in protein folding reactions. J. Mol. Biol., 253, 771–786CrossRefPubMedGoogle Scholar
  51. 51.
    Ogasahara, K. and Yutani, K. (1994) Unfolding-refolding kinetics of the tryptophan synthase alpha subunit by CD and fluorescence measurements. J. Mol. Biol., 236, 1227–1240CrossRefPubMedGoogle Scholar
  52. 52.
    Jennings, P. A., Finn, B. E., Jones, B. E. and Matthews, C. R. (1993) A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry, 32, 3783–3789CrossRefPubMedGoogle Scholar
  53. 53.
    Matouschek, A., Kellis, J. T. Jr, Serrano, L., Bycroft, M. and Fersht, A. R. (1990) Transient folding intermediates characterized by protein engineering. Nature, 346, 440–445CrossRefPubMedGoogle Scholar
  54. 54.
    Schymkowitz, J. W., Rousseau, F., Irvine, L. R. and Itzhaki, L. S. (2000) The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping. Structure, 8, 89–100CrossRefPubMedGoogle Scholar
  55. 55.
    Teilum, K., Thormann, T., Caterer, N. R., Poulsen, H. I., Jensen, P. H., Knudsen, J., Kragelund, B. B. and Poulsen, F. M. (2005) Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins, 59, 80–90CrossRefPubMedGoogle Scholar
  56. 56.
    Fowler, S. B. and Clarke, J. (2001) Mapping the folding pathway of an immunoglobulin domain: structural detail from Phi value analysis and movement of the transition state. Structure, 9, 355–366CrossRefPubMedGoogle Scholar
  57. 57.
    Cota, E. and Clarke, J. (2000) Folding of beta-sandwich proteins: threestate transition of a fibronectin type III module. Protein Sci., 9, 112–120CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jemth, P., Day, R., Gianni, S., Khan, F., Allen, M., Daggett, V. and Fersht, A. R. (2005) The structure of the major transition state for folding of an F Fdomain from experiment and simulation. J. Mol. Biol., 350, 363–378CrossRefPubMedGoogle Scholar
  59. 59.
    Melnik, B. S., Marchenkov, V. V., Evdokimov, S. R., Samatova, E. N. and Kotova, N. V. (2008) Multy-state protein: determination of carbonic anhydrase free-energy landscape. Biochem. Biophys. Res. Commun., 369, 701–706CrossRefPubMedGoogle Scholar
  60. 60.
    Tang, K. S., Guralnick, B. J.,Wang,W. K., Fersht, A. R. and Itzhaki, L. S. (1999) Stability and folding of the tumour suppressor protein p16. J. Mol. Biol., 285, 1869–1886CrossRefPubMedGoogle Scholar
  61. 61.
    Laurents, D. V., Corrales, S., Elías-Arnanz, M., Sevilla, P., Rico, M. and Padmanabhan, S. (2000) Folding kinetics of phage 434 Cro protein. Biochemistry, 39, 13963–13973CrossRefPubMedGoogle Scholar
  62. 62.
    Parker, M. J. and Marqusee, S. (1999) The cooperativity of burst phase reactions explored. J. Mol. Biol., 293, 1195–1210CrossRefPubMedGoogle Scholar
  63. 63.
    Lowe, A. R. and Itzhaki, L. S. (2007) Rational redesign of the folding pathway of a modular protein. Proc. Natl. Acad. Sci. USA, 104, 2679–2684CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Choe, S. E., Matsudaira, P. T., Osterhout, J., Wagner, G. and Shakhnovich, E. I. (1998) Folding kinetics of villin 14T, a protein domain with a central beta-sheet and two hydrophobic cores. Biochemistry, 37, 14508–14518CrossRefPubMedGoogle Scholar
  65. 65.
    Muñoz, V., Lopez, E. M., Jager, M. and Serrano, L. (1994) Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. kinetic analysis of the inverse hydrophobic effect. Biochemistry, 33, 5858–5866PubMedGoogle Scholar
  66. 66.
    Stagg, L., Samiotakis, A., Homouz, D., Cheung, M. S. and Wittung-Stafshede, P. (2010) Residue-specific analysis of frustration in the folding landscape of repeat beta/alpha protein apoflavodoxin. J. Mol. Biol., 396, 75–89CrossRefPubMedGoogle Scholar
  67. 67.
    Ratcliff, K., Corn, J. and Marqusee, S. (2009) Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry, 48, 5890–5898CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Luo, L. (2012) Protein photo-folding and quantum folding theory. Sci. China Life Sci., 55, 533–541CrossRefPubMedGoogle Scholar
  69. 69.
    Fang, C., Frontiera, R. R., Tran, R., Mathies, R. A. and Mathies, R. A. (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature, 462, 200–204CrossRefPubMedGoogle Scholar
  70. 70.
    Zurek, W. H. (2002) Decoherence and the transition from quantum to classical–Revisited. In Quantum Decoherence. 16–31. Birkhäuser Basel, Doi:10.1007/978-3-7643-7808-0_1Google Scholar
  71. 71.
    Tegmark, M. (2000) Importance of quantum decoherence in brain processes. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 61, 4194–4206PubMedGoogle Scholar
  72. 72.
    Deng, D., Xu, C., Sun, P., Wu, J., Yan, C., Hu, M. and Yan, N. (2014) Crystal structure of the human glucose transporter GLUT1. Nature, 510, 121–125CrossRefPubMedGoogle Scholar
  73. 73.
    Luo, L. F. (2014) Quantum theory on glucose transport across membrane. arXiv: 1407.7198 at http://arxiv.org/abs/1407.7198Google Scholar
  74. 74.
    Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., et al. (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654CrossRefPubMedGoogle Scholar
  75. 75.
    Luo, L. F. (2015) From chemically to physically induced pluripotency in stem cell. arXiv: 1506.02053 at http://arxiv.org/abs/1506.02053Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2016

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyInner Mongolia UniversityHohhotChina
  2. 2.Center for Physics Experiment, College of ScienceInner Mongolia University of TechnologyHohhotChina

Personalised recommendations