Quantitative Biology

, Volume 4, Issue 4, pp 270–282 | Cite as

A resistant method for landmark-based analysis of individual asymmetry in two dimensions

  • Sebastián Torcida
  • Paula Gonzalez
  • Federico Lotto
Research Article



Symmetry of biological structures can be thought as the repetition of their parts in different positions and orientations. Asymmetry analyses, therefore, focuses on identifying and measuring the location and extent of symmetry departures in such structures. In the context of geometric morphometrics, a key step when studying morphological variation is the estimation of the symmetric shape. The standard procedure uses the least-squares Procrustes superimposition, which by averaging shape differences often underestimates the symmetry departures thus leading to an inaccurate description of the asymmetry pattern. Moreover, the corresponding asymmetry values are neither geometrically intuitive nor visually perceivable.


In this work, a resistant method for landmark-based asymmetry analysis of individual bilateral symmetric structures in 2D is introduced. A geometrical derivation of this new approach is offered, while its advantages in comparison with the standard method are examined and discussed through a few illustrative examples.


Experimental tests on both artificial and real data show that asymmetry is more effectively measured by using the resistant method because the underlying symmetric shape is better estimated. Therefore, the most asymmetric (respectively symmetric) landmarks are better determined through their large (respectively small) residuals. The percentage of asymmetry that is accounted for by each landmark is an additional revealing measure the new method offers which agrees with the displayed results while helping in their biological interpretation.


The resistant method is a useful exploratory tool for analyzing shape asymmetry in 2D, and it might be the preferable method whenever a non homogeneous deformation of bilateral symmetric structures is possible. By offering a more detailed and rather exhaustive explanation of the asymmetry pattern, this new approach will hopefully contribute to improve the quality of biological or developmental inferences.


resistant procrustes method shape asymmetry matching and object symmetry landmarks 


  1. 1.
    Debat, V., Milton, C. C., Rutherford, S., Klingenberg, C. P. and Hoffmann, A. A. (2006) Hsp90 and the quantitative variation of wing shape in Drosophila melanogaster. Evolution, 60, 2529–2538CrossRefPubMedGoogle Scholar
  2. 2.
    Gonzalez, P. N., Lotto, F. P. and Hallgrímsson, B. (2014) Canalization and developmental instability of the fetal skull in a mouse model of maternal nutritional stress. Am. J. Phys. Anthropol., 154, 544–553CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Willmore, K. E., Leamy, L. and Hallgrímsson, B. (2006) Effects of developmental and functional interactions on mouse cranial variability through late ontogeny. Evol. Dev., 8, 550–567CrossRefPubMedGoogle Scholar
  4. 4.
    Palmer, A. R. and Strobeck, C. (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu. Rev. Ecol. Syst., 17, 391–421CrossRefGoogle Scholar
  5. 5.
    Adams, D. C., Rohlf, F. J. and Slice, D. E. (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool., 71, 5–16CrossRefGoogle Scholar
  6. 6.
    Adams, D. C., Rohlf, F. J. and Slice, D. E. (2013) A field comes of age: geometric morphometrics in the twenty first century. Hystrix, 24, 7–14Google Scholar
  7. 7.
    Auffray, J. C., Alibert, P., Renaud, S., Orth, A. and Bonhomme, F. (1996). Fluctuating asymmetry in mus musculus sub-specific hybridization: traditional and Procrustes comparative approach. In Advances in Morphometrics. Marcus, L. F. et al. eds., 275–283. New York: Plenum PressCrossRefGoogle Scholar
  8. 8.
    Auffray, J. C., Debat, V. and Alibert, P. (1999) Shape asymmetry and developmental stability. In On Growth and Form: Spatio-temporal Pattern Formation in Biology. Chaplain, M. A. J. et al. eds., 309–324. Chichester: WileyGoogle Scholar
  9. 9.
    Bookstein, F. L. (1996a) Biometrics, biomathematics and the morphometric synthesis. Bull. Math. Biol., 58, 313–365CrossRefPubMedGoogle Scholar
  10. 10.
    Bookstein, F. L. (1996b). Combining the tools of geometric morphometrics. In Advances in Morphometrics. L. F. Marcus, L. F. et al. eds., 131–151, New York: Plenum PressCrossRefGoogle Scholar
  11. 11.
    Klingenberg, C. P., Barluenga, M. and Meyer, A. (2002) Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution, 56, 1909–1920CrossRefPubMedGoogle Scholar
  12. 12.
    Klingenberg, C. P. (2015) Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry, 7, 843–934CrossRefGoogle Scholar
  13. 13.
    Mardia, K. V., Bookstein, F. L. and Moreton, I. J. (2000) Statistical assessment of bilateral symmetry of shapes. Biometrika, 87, 285–300.CrossRefGoogle Scholar
  14. 14.
    Mitteroecker, P. and Gunz, P. (2009) Advances in geometric morphometrics. Evol. Biol., 36, 235–247CrossRefGoogle Scholar
  15. 15.
    Smith, D. R., Crespi, B. J. and Bookstein, F. L. (1997) Fluctuating asymmetry in the honey bee, Apis mellifera: effects of ploidy and hybridization. J. Evol. Biol., 10, 551–574CrossRefGoogle Scholar
  16. 16.
    Catalano, S. A. and Goloboff, P. A. (2012) Simultaneously mapping and superimposing landmark configurations with parsimony as optimality criterion. Syst. Biol., 61, 392–400CrossRefPubMedGoogle Scholar
  17. 17.
    Richtsmeier, J. T., DeLeon, V. B. and Lele, S. R. (2002) The promise of geometric morphometrics. Am. J. Phys. Anthropol., 119, 63–91CrossRefGoogle Scholar
  18. 18.
    Theobald, D. L. and Wuttke, D. S. (2006) Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem. Proc. Natl. Acad. Sci. USA, 103, 18521–18527CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Van der Linde, K. and Houle, D. (2009) Inferring the nature of allometry from geometric data. Evol. Biol., 36, 311–322CrossRefGoogle Scholar
  20. 20.
    Siegel, A. F. and Benson, R. H. (1982) A robust comparison of biological shapes. Biometrics, 38, 341–350CrossRefPubMedGoogle Scholar
  21. 21.
    Slice, D. E. (1996). Three-dimensional generalized resistant fitting and the comparison of least-squares and resistant fit residuals. In Advances in Morphometrics, Marcus, L. F. et al. eds., 179–199, New York: Plenum PressCrossRefGoogle Scholar
  22. 22.
    Torcida, S., Perez, I. and Gonzalez, P. N. (2014) An integrated approach for landmark-based resistant shape analysis in 3D. Evol. Biol., 41, 351–366CrossRefGoogle Scholar
  23. 23.
    Hampel, F. R., Ronchetti, E. M., Rouseeuw, P. J. and Stahel, W. A. (1986) Robust Statistics: The Approach Based on Influence Functions. New York: WileyGoogle Scholar
  24. 24.
    Huber, P. (1981) Robust Statistics. New York: WileyCrossRefGoogle Scholar
  25. 25.
    Siegel, A. F. (1982) Robust regression using repeated medians. Biometrika, 69, 242–244CrossRefGoogle Scholar
  26. 26.
    Klingenberg, C. P. and McIntyre, G. S. (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52, 1363–1375CrossRefPubMedGoogle Scholar
  27. 27.
    Cheverud, J. (1995) Morphological integration in the saddleback tamarin (Saguinus fuscicollis) cranium. Am. Nat., 145, 63–89CrossRefGoogle Scholar
  28. 28.
    Hallgrímsson, B. and Lieberman, D. E. (2008) Mouse models and the evolutionary developmental biology of the skull. Integr. Comp. Biol., 48, 373–384CrossRefPubMedGoogle Scholar
  29. 29.
    Zelditch, M. L., Swiderski, D. L., Sheets, H. D. and Fink, W. L. (2004) Geometric Morphometric for Biologists. London: Academic PressGoogle Scholar
  30. 30.
    Slice, D. E. (2001) Landmark coordinates aligned by procrustes analysis do not lie in Kendall’s shape space. Syst. Biol., 50, 141–149.CrossRefPubMedGoogle Scholar
  31. 31.
    Gower, J. C. (1975) Generalized procrustes analysis. Psychometrika, 40, 33–51CrossRefGoogle Scholar
  32. 32.
    Rohlf, F. J. and Slice, D. E. (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool., 39, 40–59CrossRefGoogle Scholar
  33. 33.
    Bookstein, F. L. (1991) Morphometric Tools for Landmark Data: Geometry and Biology. New York: Cambridge University PressGoogle Scholar
  34. 34.
    Weiszfeld, E. (1937) On the point for which the sum of the distances to n given points is minimum. Tohoku Math. J., 43, 355–386Google Scholar
  35. 35.
    Xue, G. L. (1994) A globally convergent algorithm for facility location on a sphere. Comput. Math. Appl., 27, 37–50CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2016

Authors and Affiliations

  • Sebastián Torcida
    • 1
  • Paula Gonzalez
    • 2
  • Federico Lotto
    • 3
  1. 1.Dpto. Matemática-ExactasUNCPBA.TandilArgentina
  2. 2.Fac. de Ciencias Naturales y MuseoUNLP-CONICET.La PlataArgentina
  3. 3.Instituto de Veterinaria Ing. Fernando N. Dulout (IGEVET), Facultad de Cs. VeterinariasUNLP-CONICET.La PlataArgentina

Personalised recommendations