Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Quantitative Biology
  3. Article
Whole genome sequencing and its applications in medical genetics
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Long-read sequencing in human genetics

01 June 2019

Florian Kraft & Ingo Kurth

Long-read sequencing in deciphering human genetics to a greater depth

19 September 2019

Mohit K. Midha, Mengchu Wu & Kuo-Ping Chiu

Genome sequencing and implications for rare disorders

24 June 2019

Jennifer E. Posey

Copy number variation related disease genes

11 May 2018

Chaima Aouiche, Xuequn Shang & Bolin Chen

High-depth whole genome sequencing of an Ashkenazi Jewish reference panel: enhancing sensitivity, accuracy, and imputation

28 April 2018

Todd Lencz, Jin Yu, … Itsik Pe’er

Comparative analysis of whole-genome sequencing pipelines to minimize false negative findings

01 March 2019

Kyu-Baek Hwang, In-Hee Lee, … Sek Won Kong

ATAV: a comprehensive platform for population-scale genomic analyses

23 March 2021

Zhong Ren, Gundula Povysil, … David B. Goldstein

CODEX2: full-spectrum copy number variation detection by high-throughput DNA sequencing

26 November 2018

Yuchao Jiang, Rujin Wang, … Nancy R. Zhang

Towards pan-genome read alignment to improve variation calling

09 May 2018

Daniel Valenzuela, Tuukka Norri, … Veli Mäkinen

Download PDF
  • Review
  • Published: 11 May 2016

Whole genome sequencing and its applications in medical genetics

  • Jiaxin Wu1,
  • Mengmeng Wu1,
  • Ting Chen1 &
  • …
  • Rui Jiang1 

Quantitative Biology volume 4, pages 115–128 (2016)Cite this article

  • 2518 Accesses

  • 3 Citations

  • 11 Altmetric

  • Metrics details

Abstract

Fundamental improvement was made for genome sequencing since the next-generation sequencing (NGS) came out in the 2000s. The newer technologies make use of the power of massively-parallel short-read DNA sequencing, genome alignment and assembly methods to digitally and rapidly search the genomes on a revolutionary scale, which enable large-scale whole genome sequencing (WGS) accessible and practical for researchers. Nowadays, whole genome sequencing is more and more prevalent in detecting the genetics of diseases, studying causative relations with cancers, making genome-level comparative analysis, reconstruction of human population history, and giving clinical implications and instructions. In this review, we first give a typical pipeline of whole genome sequencing, including the lab template preparation, sequencing, genome assembling and quality control, variants calling and annotations. We compare the difference between whole genome and whole exome sequencing (WES), and explore a wide range of applications of whole genome sequencing for both mendelian diseases and complex diseases in medical genetics. We highlight the impact of whole genome sequencing in cancer studies, regulatory variant analysis, predictive medicine and precision medicine, as well as discuss the challenges of the whole genome sequencing.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Veeramah, K. R. and Hammer, M. F. (2014) The impact of wholegenome sequencing on the reconstruction of human population history. Nat. Rev. Genet., 15, 149–162

    Article  CAS  PubMed  Google Scholar 

  2. Hendrix, R. W. (2003) Bacteriophage genomics. Curr. Opin. Microbiol., 6, 506–511

    Article  CAS  PubMed  Google Scholar 

  3. Metzker, M. L. (2010) Sequencing technologies—the next generation. Nat. Rev. Genet., 11, 31–46

    Article  CAS  PubMed  Google Scholar 

  4. Zimmermann, J., Voss, H., Schwager, C., Stegemann, J. and Ansorge, W. (1988) Automated Sanger dideoxy sequencing reaction protocol. FEBS Lett., 233, 432–436

    Article  CAS  PubMed  Google Scholar 

  5. Watson, J. D. (1990) The human genome project: past, present, and future. Science, 248, 44–49

    Article  CAS  PubMed  Google Scholar 

  6. Fleischmann, R., Adams, M., White, O., Clayton, R., Kirkness, E., Kerlavage, A., Bult, C., Tomb, J., Dougherty, B., Merrick, J., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512

    Article  CAS  PubMed  Google Scholar 

  7. Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M., Krabichler, B., Speicher, M. R., Zschocke, J. and Trajanoski, Z. (2014) A surveyof tools for variant analysis of nextgeneration genome sequencing data. Brief. Bioinform., 15, 256–278

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu, L., Li, Y. H., Li, S. L., Hu, N., He, Y. M., Pong, R., Lin, D. N., Lu, L. H. and Law, M. (2012) Comparison of next-generation sequencing systems. J. BioMed. Biotech., 251364

    Google Scholar 

  9. Voelkerding, K. V., Dames, S. A. and Durtschi, J. D. (2009) Nextgeneration sequencing: from basic research to diagnostics. Clin. Chem., 55, 641–658

    Article  CAS  PubMed  Google Scholar 

  10. Ng, P. C. and Kirkness, E. F. (2010) Whole Genome Sequencing. In Genetic Variation, pp. 215–226, Springer

    Chapter  Google Scholar 

  11. Hurd, P. J. and Nelson, C. J. (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief. Funct. Genomics, 8, 174–183

    Article  CAS  Google Scholar 

  12. Lam, H. Y., Clark, M. J., Chen, R., Chen, R., Natsoulis, G., O’ Huallachain, M., Dewey, F. E., Habegger, L., Ashley, E. A., Gerstein, M. B., et al. (2012) Performance comparison of wholegenome sequencing platforms. Nat. Biotechnol., 30, 78–82

    Article  CAS  PubMed Central  Google Scholar 

  13. Carlton, J. M., Angiuoli, S. V., Suh, B. B., Kooij, T.W., Pertea, M., Silva, J. C., Ermolaeva, M. D., Allen, J. E., Selengut, J. D., Koo, H. L., et al. (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, 419, 512–519

    Article  CAS  PubMed  Google Scholar 

  14. Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., Albert, T. J., Blattner, F. R., van den Boom, D., Cantor, C. R., et al. (2006) Comparative genome sequencing of Escherichia coli allows observationof bacterial evolution on a laboratory timescale. Nat. Genet., 38, 1406–1412

    Article  CAS  PubMed  Google Scholar 

  15. Lupski, J. R. (2015) Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ. Mol. Mutagen., 56, 419–436

    Article  CAS  Google Scholar 

  16. Saunders, C. J., Miller, N. A., Soden, S. E., Dinwiddie, D. L., Noll, A., Alnadi, N. A., Andraws, N., Patterson, M. L., Krivohlavek L. A., Fellis, J., et al. (2012) Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Trans. Med. 4, 154ra135

    Article  CAS  Google Scholar 

  17. Cirulli, E. T. and Goldstein, D. B. (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet., 11, 415–425

    Article  CAS  PubMed  Google Scholar 

  18. Foley, S. B., Rios, J. J., Mgbemena, V. E., Robinson, L. S., Hampel, H. L., Toland, A. E., Durham, L. and Ross, T. S. (2015) Use of whole genome sequencing for diagnosis and discovery in the cancer genetics clinic. EBioMedicine, 2, 74–81

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen, K. and Meric-Bernstam, F. (2015) Whole genome sequencing in cancer clinics. EBioMedicine, 2, 15–16

    Article  PubMed  PubMed Central  Google Scholar 

  20. Berg, J. S., Khoury, M. J. and Evans, J. P. (2011) Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genet.Med., 13, 499–504

    Article  PubMed  Google Scholar 

  21. Dewey, F. E., Grove, M. E., Pan, C., Goldstein, B. A., Bernstein, J. A., Chaib, H., Merker, J. D., Goldfeder, R. L., Enns, G. M., David, S. P., et al. (2014) Clinical interpretation and implications of wholegenome sequencing. JAMA, 311, 1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belkadi, A., Bolze, A., Itan, Y., Cobat, A., Vincent, Q. B., Antipenko, A., Shang, L., Boisson, B., Casanova, J.-L. and Abel, L. (2015) Whole-genome sequencing is more powerful than wholeexome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA, 112, 5473–5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ekblom, R. and Wolf, J. B. (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl., 7, 1026–1042

    Article  PubMed  PubMed Central  Google Scholar 

  24. https://support.illumina.com/downloads/genomic_dna_sample_-prep_guide_1003806.html

  25. van Dijk, E. L., Jaszczyszyn, Y. and Thermes, C. (2014) Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res., 322, 12–20

    Article  PubMed  CAS  Google Scholar 

  26. Miyamoto, M., Motooka, D., Gotoh, K., Imai, T., Yoshitake, K., Goto, N., Iida, T., Yasunaga, T., Horii, T., Arakawa, K., et al.(2014) Performance comparison of second-and third-generation sequencers using a bacterial genome with two chromosomes. BMC Genomics, 15, 699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. http://allseq.com/knowledgebank

  28. Bao, S., Jiang, R., Kwan, W. K., Wang, B. B., Ma, X. and Song, Y.-Q. (2011) Evaluation of next-generation sequencing software in mapping and assembly. J. Hum. Genet., 56, 406–414

    Article  CAS  PubMed  Google Scholar 

  29. Swindell, S. R. and Plasterer, T. N. (1997) SEQMAN. In Sequence Data Analysis Guidebook, pp. 75–89, New York: Springer

    Chapter  Google Scholar 

  30. Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P. and Batzoglou, S. (2007) Whole-genome sequencing and assembly with high-throughput, short-read technologies. PLoS One, 2, e484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Paszkiewicz, K. and Studholme, D. J. (2010) De novo assembly of short sequence reads. Brief. Bioinform., 11, 457–472

    Article  CAS  PubMed  Google Scholar 

  32. Hunt, M., Kikuchi, T., Sanders, M., Newbold, C., Berriman, M. and Otto, T. D. (2013) REAPR: a universal tool for genome assembly evaluation. Genome Biol., 14, R47

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu, X., Han, S., Wang, Z., Gelernter, J. and Yang, B.-Z. (2013) Variant callers for next-generation sequencing data: a comparison study. PLoS One, 8, e75619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Altmann, A., Weber, P., Bader, D., Preuß, M., Binder, E. B. and Müller-Myhsok, B. (2012) A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum. Genet., 131, 1541–1554

    Article  PubMed  Google Scholar 

  35. Pirooznia, M., Goes, F. S. and Zandi, P. P (2015) Whole-genome CNV analysis: advances in computational approaches. Front.Genet., 6, 138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, X., Jian, X. and Boerwinkle, E. (2011) dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat., 32, 894–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencingdata. Genome Res., 20, 1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paila, U., Chapman, B. A., Kirchner, R. and Quinlan, A. R. (2013) GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput. Biol., 9, e1003153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, J., Li, Y. and Jiang, R. (2014) Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLoS Genet., 10, e1004237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Makarov, V., O’Grady, T., Cai, G., Lihm, J., Buxbaum, J. D. and Yoon, S. (2012) AnnTools: a comprehensive and versatile annotation toolkit for genomic variants. Bioinformatics, 28, 724–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhao, M. and Zhao, Z. (2013) CNVannotator: a comprehensive annotation server for copy number variation in the human genome. 8, e80170

    Google Scholar 

  45. McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P. and Cunningham, F. (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics, 26, 2069–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bick, D. and Dimmock, D. (2011) Whole exome and whole genome sequencing. Curr. Opin. Pediatr., 23, 594–600

    Article  PubMed  Google Scholar 

  47. Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W. A. Jr and Hewlett, E. L. (2015) Whole-genome sequencing in outbreak analysis. Clin. Microbiol. Rev., 28, 541–563

    Article  PubMed  Google Scholar 

  48. http://blog.genohub.com/whole-genome-sequencing-wgs-vs-wholeexome-sequencing-wes/

  49. Online Mendelian Inheritance in Man. Johns Hopkins University (Baltimore,MD), http://omim.org/

  50. Botstein, D. and Risch, N. (2003) Discovering genotypes underlying human phenotypes: pastsuccesses for mendelian disease, future approaches for complex disease. Nat. Genet., 33, 228–237

    Article  CAS  PubMed  Google Scholar 

  51. Ku, C.-S., Naidoo, N. and Pawitan, Y. (2011) Revisiting Mendelian disorders through exome sequencing. Hum. Genet., 129, 351–370

    Article  PubMed  Google Scholar 

  52. Bamshad, M. J., Ng, S. B., Bigham, A.W., Tabor, H. K., Emond, M. J., Nickerson, D. A. and Shendure, J. (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet., 12, 745–755

    Article  CAS  PubMed  Google Scholar 

  53. Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A.W., Tabor, H. K., Dent, K. M., Huff, C. D., Shannon, P. T., Jabs, E.W., Nickerson, D. A., et al. (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet., 42, 30–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., Braxton, A., Beuten, J., Xia, F., Niu, Z., et al. (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med., 369, 1502–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H.I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., et al. (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet., 42, 790–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roach, J. C., Glusman, G., Smit, A. F. A., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant, K. P., Goodman, N., Bamshad, M., et al. (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lupski, J. R., Reid, J. G., Gonzaga-Jauregui, C., Rio Deiros, D., Chen, D. C. Y., Nazareth, L., Bainbridge, M., Dinh, H., Jing, C., Wheeler, D. A., et al. (2010) Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N. Engl. J. Med., 362, 1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cooper, G. M., et al. (2005) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res., 15, 901–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taylor, J. C., Martin, H. C., Lise, S., Broxholme, J., Cazier, J.-B., Rimmer, A., Kanapin, A., Lunter, G., Fiddy, S., Allan, C., et al. (2015) Factors influencing successof clinical genome sequencing across a broad spectrum of disorders. Nat. Genet., 47, 717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar, P., Henikoff, S. and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc., 4, 1073–1081

    Article  CAS  PubMed  Google Scholar 

  61. Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations. Nat. Methods, 7, 248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quang, D., Chen, Y. and Xie, X. (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics, 31, 761–763

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shihab, H. A., Rogers, M. F., Gough, J., Mort, M., Cooper, D. N., Day, I. N. M., Gaunt, T. R. and Campbell C. (2015) An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics, 10.1093/bioinformatics/btv009

    Google Scholar 

  65. Fu, Y., Liu, Z., Lou, S., Bedford, J., Mu, X. J., Yip, K. Y., Khurana, E. and Gerstein, M. (2014) FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biol., 15, 480

    Article  PubMed  PubMed Central  Google Scholar 

  66. Khurana, E., Fu, Y., Colonna, V., Mu, X. J., Kang, H. M., Lappalainen, T., Sboner, A., Lochovsky, L., Chen, J., Harmanci, A., et al. (2013) Integrative annotation of variants from 1092 humans: application to cancer genomics. Science, 342, 1235587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lehmann, K.-V. and Chen, T. (2013) Exploring functional variant discovery in non-coding regions with SInBaD. Nucleic Acids Res., 41, e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, D., Gorkin, D. U., Baker, M., Strober, B. J., Asoni, A. L., McCallion, A. S. and Beer, M. A. (2015) A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet., 47, 955–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ritchie, G. R., Dunham, I., Zeggini, E. and Flicek, P. (2014) Functional annotation of noncoding sequence variants. Nat. Methods, 11, 294–296

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, F. and Lupski, J. R. (2015) Noncoding genetic variants in human disease. Hum. Mol. Genet.

    Google Scholar 

  71. Lupski, J. R. (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet., 14, 417–422

    Article  CAS  PubMed  Google Scholar 

  72. Lee, C. and Morton, C. C. (2008) Structural genomic variation and personalized medicine. N. Engl. J. Med., 358, 740–741

    Article  CAS  PubMed  Google Scholar 

  73. Lupski, J. R. (2009) Genomic disorders ten years on. Genome Med., 1, 42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sathirapongsasuti, J. F., Lee, H., Horst, B. A. J., Brunner, G., Cochran, A. J., Binder, S., Quackenbush, J. and Nelson, S. F. (2011) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics, 27, 2648–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., Handsaker, R. E., McCarroll, S. A., O’Donovan, M. C., Owen, M. J., et al. (2012) Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am. J. Hum. Genet., 91, 597–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zong, C., Lu, S., Chapman, A. R. and Xie, X. S. (2012) Genomewide detectionof single-nucleotide and copy-number variations of a single humancell. Science, 338, 1622–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cardon, L. R. and Bell, J. I. (2001) Association study designs for complex diseases. Nat. Rev. Genet., 2, 91–99

    Article  CAS  PubMed  Google Scholar 

  78. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., et al. (2009) Finding the missing heritability of complex diseases. Nature, 461, 747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schork, N. J., Murray, S. S., Frazer, K. A. and Topol, E. J. (2009) Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev., 19, 212–219

    Article  CAS  PubMed  Google Scholar 

  80. Spain, S. L. and Barrett, J. C. (2015) Strategies for fine-mapping complex traits. Hum. Mol. Genet.

    Google Scholar 

  81. CONVERGE consortium (2015) Sparse whole-genome sequencing identifiestwo loci for major depressive disorder. Nature, 523, 588–591.

  82. Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I. and Heckerman, D. (2011) FaST linear mixed models for genome-wide association studies. Nat. Methods, 8, 833–835

    Article  CAS  PubMed  Google Scholar 

  83. Widmer, C., Lippert, C., Weissbrod, O., Fusi, N., Kadie, C., Davidson, R., Listgarten, J. and Heckerman, D. (2014) Further improvements to linear mixed models for genome-wide association studies. Sci. Rep., 4, 6874

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet., 89, 82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Taylor, P. N., Porcu, E., Chew, S., Campbell, P. J., Traglia, M., Brown, S. J., Mullin, B. H., Shihab, H. A., Min, J., Walter, K., et al. (2015) Whole-genome sequence-based analysis of thyroid function. Nat. Commun., 6, 5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morrison, A. C., Voorman, A., Johnson, A. D., Liu, X. M., Yu, J., Li, A., Muzny, D., Yu, F. L., Rice, K., Zhu, C. S., et al. (2013) Whole genome sequence-based analysis of a model complex trait, high density lipoprotein cholesterol. Nat. Genet., 45, 899–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet., 13, 135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., et al. (2010) Common SNPs explain a large proportion of the heritability for human height. Nat. Genet., 42, 565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, Y., Sidore, C., Kang, H. M., Boehnke, M. and Abecasis, G. R. (2011) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res., 21, 940–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Edwards, S. L., Beesley, J., French, J. D. and Dunning, A. M. (2013) Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet., 93, 779–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Farh, K. K.-H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley, W. J., Beik, S., Shoresh, N., Whitton, H., Ryan, R. J. H., Shishkin, A. A., et al. (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature, 518, 337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maller, J. B., McVean, G., Byrnes, J., Vukcevic, D., Palin, K., Su, Z., Howson, J.M. M., Auton, A., Myers, S., Morris, A., et al. (2012) Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet., 44, 1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barbieri, C. E., Baca, S. C., Lawrence, M. S., Demichelis, F., Blattner, M., Theurillat, J.-P., White, T. A., Stojanov, P., Van Allen, E., Stransky, N., et al. (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet., 44, 685–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, K., Kan, J., Yuen, S. T., Shi, S. T., Chu, K. M., Law, S., Chan, T. L., Kan, Z., Chan, A. S. Y., Tsui, W. Y., et al. (2011) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet., 43, 1219–1223

    Article  CAS  PubMed  Google Scholar 

  95. Nakagawa, H., Wardell, C. P., Furuta, M., Taniguchi, H. and Fujimoto, A. (2015) Cancer whole-genome sequencing: present and future. Oncogene, 34, 5943–5950

    Article  CAS  PubMed  Google Scholar 

  96. Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L. and Garraway, L. A. (2013) Highly recurrent TERT promoter mutations in human melanoma. Science, 339, 957–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vinagre, J., Almeida, A., Pópulo, H., Batista, R., Lyra, J., Pinto, V., Coelho, R., Celestino, R., Prazeres, H., Lima, L., et al. (2013) Frequency of TERT promoter mutations in human cancers. Nat. Commun., 4, 2185

    Article  PubMed  CAS  Google Scholar 

  98. Mansour, M. R., Abraham, B. J., Anders, L., Berezovskaya, A., Gutierrez, A., Durbin, A. D., Etchin, J., Lawton, L., Sallan, S. E., Silverman, L. B., et al. (2014) An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 346, 1373–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. and Lee, W. (2014) Genome-wide analysis of noncoding regulatory mutationsin cancer. Nat. Genet., 46, 1160–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fredriksson, N. J., Ny, L., Nilsson, J. A. and Larsson, E. (2014) Systematic analysisof noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet., 46, 1258–1263

    Article  CAS  PubMed  Google Scholar 

  101. Melton, C., Reuter, J. A., Spacek, D. V. and Snyder, M. (2015) Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat. Genet., 47, 710–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, B. and Leal, S. M. (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet., 83, 311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lin, D.-Y. and Tang, Z.-Z. (2011) A general framework for detecting disease associations with rare variants in sequencing studies. Am. J. Hum. Genet., 89, 354–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gonzalez-Perez, A., Mustonen, V., Reva, B., Ritchie, G. R. S., Creixell, P., Karchin, R., Vazquez, M., Fink, J. L., Kassahn, K. S., Pearson, J. V., et al. (2013) Computational approaches to identify functional genetic variants in cancer genomes. Nat. Methods, 10, 723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Albert, F.W. and Kruglyak, L. (2015) The role of regulatory variation in complex traits and disease. Nat. Rev. Genet., 16, 197–212

    Article  CAS  PubMed  Google Scholar 

  106. Li, M. J., Yan, B., Sham, P. C., and Wang, J.W. (2014) Exploring the function of genetic variants in the non-codinggenomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief. Bioinform., 16, 393–412

    Article  PubMed  Google Scholar 

  107. Ward, L. D. and Kellis, M. (2012) Interpreting noncoding genetic variation in complex traitsand human disease. Nat. Biotechnol., 30, 1095–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rockman, M. V. and Kruglyak, L. (2006) Genetics of global gene expression. Nat. Rev. Genet., 7, 862–872

    Article  CAS  PubMed  Google Scholar 

  109. Degner, J. F., Pai, A. A., Pique-Regi, R., Veyrieras, J.-B., Gaffney, D. J., Pickrell, J. K., De Leon, S., Michelini, K., Lewellen, N., Crawford, G. E., et al. (2012) D Nase I sensitivity QTLs area major determinant of human expression variation. Nature, 482, 390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Monlong, J., Calvo, M., Ferreira, P. G. and Guigó, R. (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun., 5, 4698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Koren, A., Handsaker, R. E., Kamitaki, N., Karlic, R., Ghosh, S., Polak, P., Eggan, K. and McCarroll, S. A. (2014) Genetic variation in human DNA replication timing. Cell, 159, 1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. del Rosario, R. C.-H., Poschmann, J., Rouam, S. L., Png, E., Khor, C. C., Hibberd, M. L. and Prabhakar, S. (2015) Sensitive detection of chromatin-altering polymorphisms reveals autoimmune diseasemechanisms. Nat. Methods, 12, 458–464

    Article  PubMed  CAS  Google Scholar 

  113. Gibbs, J. R., van der Brug, M. P., Hernandez, D. G., Traynor, B. J., Nalls, M. A., Lai, S.-L., Arepalli, S., Dillman, A., Rafferty, I. P., Troncoso, J., et al. (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet., 6, e1000952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lappalainen, T., Sammeth, M., Friedländer, M. R., ‘t Hoen, P. A. C., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., et al., (2013) Transcriptome and genome sequencing uncovers functional variationin humans. Nature, 501, 506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., Reynolds, A. P., Sandstrom, R., Qu, H., Brody, J., et al. (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science, 337, 1190–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maurano, M. T., Haugen, E., Sandstrom, R., Vierstra, J., Shafer, A., Kaul, R. and Stamatoyannopoulos, J. A. (2015) Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo. Nat. Genet., 47, 1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kasowski, M., Grubert, F., Heffelfinger, C., Hariharan, M., Asabere, A., Waszak, S. M., Habegger, Lukas., Rozowsky, J., Shi, M., Urban, A. E., et al. (2010) Variation in transcription factor binding among humans. Science 328, 232–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Karczewski, K. J., Dudley, J. T., Kukurba, K. R., Chen, R., Butte, A. J., Montgomery, S. B. and Snyder, M. (2013) Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA, 110, 9607–9612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chiang, C., Layer, R. M., Faust, G. G., Lindberg, M. R., Rose, D. B., Garrison, E. P., Marth, G. T., Quinlan, A. R. and Hall, I. M. (2014) SpeedSeq: Ultra-fast personal genome analysis and interpretation. Nat. Meth., 12, 966–968

    Article  CAS  Google Scholar 

  120. Park, P. J. (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Song, L. and Crawford, G. E. (2010) DNase-seq: a high-resolution technique for mapping activegene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. pdb. prot5384

    Google Scholar 

  122. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. and Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 10, 1213–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. dbWGFP: http://bioinfo.au.tsinghua.edu.cn/dbwgfp

  124. Biesecker, L. G. (2013) Hypothesis-generating research and predictive medicine. Genome Res., 23, 1051–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Simon, R. (2011) Genomic biomarkers in predictive medicine. An interim analysis. EMBO Mol. Med., 3, 429–435

    Article  CAS  PubMed  Google Scholar 

  126. Matsui, S., Simon, R., Qu, P., Shaughnessy, J. D., Barlogie, B. and Crowley, J. (2012) Developing and validating continuous genomic signatures in randomized clinical trials for predictive medicine. Clin. Cancer Res., 18, 6065–6073

    Article  PubMed  PubMed Central  Google Scholar 

  127. Collins, F. S. and Varmus, H. (2015) A new initiative on precision medicine. N. Engl. J. Med., 372, 793–795

    Article  CAS  PubMed  Google Scholar 

  128. Rubin, M. A. (2015) Health: Make precision medicine work for cancer care. Nature, 520, 290–291

    Article  CAS  PubMed  Google Scholar 

  129. Bellmunt, J., Orsola, A. and Sonpavde, G. (2015) Precision and predictive medicine in urothelial cancer: Are we making progress? Eur. Urol., 68, 547–549

    Article  PubMed  Google Scholar 

  130. Geschwind, D. H. and State, M. W. (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol., 14, 1109–1120

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mak, H. C. (2012) Genome interpretation and assembly—recent progress and next steps. Nat. Biotechnol., 30, 1081–1083

    Article  CAS  Google Scholar 

  132. Shendure, J. and Aiden, E. L. (2012) The expanding scope of DNA sequencing. Nat. Biotechnol., 30, 1084–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fujimoto, A., Nakagawa, H., Hosono, N., Nakano, K., Abe, T., Boroevich, K. A., Nagasaki, M., Yamaguchi, R., Shibuya, T., Kubo, M., et al. (2010) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat. Genet., 42, 931–936

    Article  CAS  PubMed  Google Scholar 

  134. Gonzaga-Jauregui, C., Lupski, J. R. and Gibbs, R. A. (2012) Human genome sequencing in health and disease. Annu. Rev. Med., 63, 35–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, 100084, China

    Jiaxin Wu, Mengmeng Wu, Ting Chen & Rui Jiang

Authors
  1. Jiaxin Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mengmeng Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ting Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Rui Jiang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rui Jiang.

Additional information

This article is dedicated to the Special Collection of Recent Advances in Next-Generation Bioinformatics (Ed. Xuegong Zhang).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wu, M., Chen, T. et al. Whole genome sequencing and its applications in medical genetics. Quant Biol 4, 115–128 (2016). https://doi.org/10.1007/s40484-016-0067-0

Download citation

  • Received: 30 October 2015

  • Revised: 04 February 2016

  • Accepted: 04 February 2016

  • Published: 11 May 2016

  • Issue Date: June 2016

  • DOI: https://doi.org/10.1007/s40484-016-0067-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • whole genome sequencing
  • whole exome sequencing
  • next-generation sequencing
  • non-coding
  • regulatory variant
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.239.117.1

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.