Abstract
Fundamental improvement was made for genome sequencing since the next-generation sequencing (NGS) came out in the 2000s. The newer technologies make use of the power of massively-parallel short-read DNA sequencing, genome alignment and assembly methods to digitally and rapidly search the genomes on a revolutionary scale, which enable large-scale whole genome sequencing (WGS) accessible and practical for researchers. Nowadays, whole genome sequencing is more and more prevalent in detecting the genetics of diseases, studying causative relations with cancers, making genome-level comparative analysis, reconstruction of human population history, and giving clinical implications and instructions. In this review, we first give a typical pipeline of whole genome sequencing, including the lab template preparation, sequencing, genome assembling and quality control, variants calling and annotations. We compare the difference between whole genome and whole exome sequencing (WES), and explore a wide range of applications of whole genome sequencing for both mendelian diseases and complex diseases in medical genetics. We highlight the impact of whole genome sequencing in cancer studies, regulatory variant analysis, predictive medicine and precision medicine, as well as discuss the challenges of the whole genome sequencing.

References
Veeramah, K. R. and Hammer, M. F. (2014) The impact of wholegenome sequencing on the reconstruction of human population history. Nat. Rev. Genet., 15, 149–162
Hendrix, R. W. (2003) Bacteriophage genomics. Curr. Opin. Microbiol., 6, 506–511
Metzker, M. L. (2010) Sequencing technologies—the next generation. Nat. Rev. Genet., 11, 31–46
Zimmermann, J., Voss, H., Schwager, C., Stegemann, J. and Ansorge, W. (1988) Automated Sanger dideoxy sequencing reaction protocol. FEBS Lett., 233, 432–436
Watson, J. D. (1990) The human genome project: past, present, and future. Science, 248, 44–49
Fleischmann, R., Adams, M., White, O., Clayton, R., Kirkness, E., Kerlavage, A., Bult, C., Tomb, J., Dougherty, B., Merrick, J., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512
Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M., Krabichler, B., Speicher, M. R., Zschocke, J. and Trajanoski, Z. (2014) A surveyof tools for variant analysis of nextgeneration genome sequencing data. Brief. Bioinform., 15, 256–278
Liu, L., Li, Y. H., Li, S. L., Hu, N., He, Y. M., Pong, R., Lin, D. N., Lu, L. H. and Law, M. (2012) Comparison of next-generation sequencing systems. J. BioMed. Biotech., 251364
Voelkerding, K. V., Dames, S. A. and Durtschi, J. D. (2009) Nextgeneration sequencing: from basic research to diagnostics. Clin. Chem., 55, 641–658
Ng, P. C. and Kirkness, E. F. (2010) Whole Genome Sequencing. In Genetic Variation, pp. 215–226, Springer
Hurd, P. J. and Nelson, C. J. (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief. Funct. Genomics, 8, 174–183
Lam, H. Y., Clark, M. J., Chen, R., Chen, R., Natsoulis, G., O’ Huallachain, M., Dewey, F. E., Habegger, L., Ashley, E. A., Gerstein, M. B., et al. (2012) Performance comparison of wholegenome sequencing platforms. Nat. Biotechnol., 30, 78–82
Carlton, J. M., Angiuoli, S. V., Suh, B. B., Kooij, T.W., Pertea, M., Silva, J. C., Ermolaeva, M. D., Allen, J. E., Selengut, J. D., Koo, H. L., et al. (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, 419, 512–519
Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., Albert, T. J., Blattner, F. R., van den Boom, D., Cantor, C. R., et al. (2006) Comparative genome sequencing of Escherichia coli allows observationof bacterial evolution on a laboratory timescale. Nat. Genet., 38, 1406–1412
Lupski, J. R. (2015) Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ. Mol. Mutagen., 56, 419–436
Saunders, C. J., Miller, N. A., Soden, S. E., Dinwiddie, D. L., Noll, A., Alnadi, N. A., Andraws, N., Patterson, M. L., Krivohlavek L. A., Fellis, J., et al. (2012) Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Trans. Med. 4, 154ra135
Cirulli, E. T. and Goldstein, D. B. (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet., 11, 415–425
Foley, S. B., Rios, J. J., Mgbemena, V. E., Robinson, L. S., Hampel, H. L., Toland, A. E., Durham, L. and Ross, T. S. (2015) Use of whole genome sequencing for diagnosis and discovery in the cancer genetics clinic. EBioMedicine, 2, 74–81
Chen, K. and Meric-Bernstam, F. (2015) Whole genome sequencing in cancer clinics. EBioMedicine, 2, 15–16
Berg, J. S., Khoury, M. J. and Evans, J. P. (2011) Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genet.Med., 13, 499–504
Dewey, F. E., Grove, M. E., Pan, C., Goldstein, B. A., Bernstein, J. A., Chaib, H., Merker, J. D., Goldfeder, R. L., Enns, G. M., David, S. P., et al. (2014) Clinical interpretation and implications of wholegenome sequencing. JAMA, 311, 1035–1045
Belkadi, A., Bolze, A., Itan, Y., Cobat, A., Vincent, Q. B., Antipenko, A., Shang, L., Boisson, B., Casanova, J.-L. and Abel, L. (2015) Whole-genome sequencing is more powerful than wholeexome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA, 112, 5473–5478
Ekblom, R. and Wolf, J. B. (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl., 7, 1026–1042
https://support.illumina.com/downloads/genomic_dna_sample_-prep_guide_1003806.html
van Dijk, E. L., Jaszczyszyn, Y. and Thermes, C. (2014) Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res., 322, 12–20
Miyamoto, M., Motooka, D., Gotoh, K., Imai, T., Yoshitake, K., Goto, N., Iida, T., Yasunaga, T., Horii, T., Arakawa, K., et al.(2014) Performance comparison of second-and third-generation sequencers using a bacterial genome with two chromosomes. BMC Genomics, 15, 699
http://allseq.com/knowledgebank
Bao, S., Jiang, R., Kwan, W. K., Wang, B. B., Ma, X. and Song, Y.-Q. (2011) Evaluation of next-generation sequencing software in mapping and assembly. J. Hum. Genet., 56, 406–414
Swindell, S. R. and Plasterer, T. N. (1997) SEQMAN. In Sequence Data Analysis Guidebook, pp. 75–89, New York: Springer
Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P. and Batzoglou, S. (2007) Whole-genome sequencing and assembly with high-throughput, short-read technologies. PLoS One, 2, e484
Paszkiewicz, K. and Studholme, D. J. (2010) De novo assembly of short sequence reads. Brief. Bioinform., 11, 457–472
Hunt, M., Kikuchi, T., Sanders, M., Newbold, C., Berriman, M. and Otto, T. D. (2013) REAPR: a universal tool for genome assembly evaluation. Genome Biol., 14, R47
Liu, X., Han, S., Wang, Z., Gelernter, J. and Yang, B.-Z. (2013) Variant callers for next-generation sequencing data: a comparison study. PLoS One, 8, e75619
Altmann, A., Weber, P., Bader, D., Preuß, M., Binder, E. B. and Müller-Myhsok, B. (2012) A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum. Genet., 131, 1541–1554
Pirooznia, M., Goes, F. S. and Zandi, P. P (2015) Whole-genome CNV analysis: advances in computational approaches. Front.Genet., 6, 138
DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 491–498
Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310–315
Liu, X., Jian, X. and Boerwinkle, E. (2011) dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat., 32, 894–899
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencingdata. Genome Res., 20, 1297–1303
Paila, U., Chapman, B. A., Kirchner, R. and Quinlan, A. R. (2013) GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput. Biol., 9, e1003153
Wu, J., Li, Y. and Jiang, R. (2014) Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLoS Genet., 10, e1004237
Makarov, V., O’Grady, T., Cai, G., Lihm, J., Buxbaum, J. D. and Yoon, S. (2012) AnnTools: a comprehensive and versatile annotation toolkit for genomic variants. Bioinformatics, 28, 724–725
Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164
Zhao, M. and Zhao, Z. (2013) CNVannotator: a comprehensive annotation server for copy number variation in the human genome. 8, e80170
McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P. and Cunningham, F. (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics, 26, 2069–2070
Bick, D. and Dimmock, D. (2011) Whole exome and whole genome sequencing. Curr. Opin. Pediatr., 23, 594–600
Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W. A. Jr and Hewlett, E. L. (2015) Whole-genome sequencing in outbreak analysis. Clin. Microbiol. Rev., 28, 541–563
http://blog.genohub.com/whole-genome-sequencing-wgs-vs-wholeexome-sequencing-wes/
Online Mendelian Inheritance in Man. Johns Hopkins University (Baltimore,MD), http://omim.org/
Botstein, D. and Risch, N. (2003) Discovering genotypes underlying human phenotypes: pastsuccesses for mendelian disease, future approaches for complex disease. Nat. Genet., 33, 228–237
Ku, C.-S., Naidoo, N. and Pawitan, Y. (2011) Revisiting Mendelian disorders through exome sequencing. Hum. Genet., 129, 351–370
Bamshad, M. J., Ng, S. B., Bigham, A.W., Tabor, H. K., Emond, M. J., Nickerson, D. A. and Shendure, J. (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet., 12, 745–755
Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A.W., Tabor, H. K., Dent, K. M., Huff, C. D., Shannon, P. T., Jabs, E.W., Nickerson, D. A., et al. (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet., 42, 30–35
Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., Braxton, A., Beuten, J., Xia, F., Niu, Z., et al. (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med., 369, 1502–1511
Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H.I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., et al. (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet., 42, 790–793
Roach, J. C., Glusman, G., Smit, A. F. A., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant, K. P., Goodman, N., Bamshad, M., et al. (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636–639
Lupski, J. R., Reid, J. G., Gonzaga-Jauregui, C., Rio Deiros, D., Chen, D. C. Y., Nazareth, L., Bainbridge, M., Dinh, H., Jing, C., Wheeler, D. A., et al. (2010) Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N. Engl. J. Med., 362, 1181–1191
Cooper, G. M., et al. (2005) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res., 15, 901–913
Taylor, J. C., Martin, H. C., Lise, S., Broxholme, J., Cazier, J.-B., Rimmer, A., Kanapin, A., Lunter, G., Fiddy, S., Allan, C., et al. (2015) Factors influencing successof clinical genome sequencing across a broad spectrum of disorders. Nat. Genet., 47, 717–726
Kumar, P., Henikoff, S. and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc., 4, 1073–1081
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations. Nat. Methods, 7, 248–249
Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310–315
Quang, D., Chen, Y. and Xie, X. (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics, 31, 761–763
Shihab, H. A., Rogers, M. F., Gough, J., Mort, M., Cooper, D. N., Day, I. N. M., Gaunt, T. R. and Campbell C. (2015) An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics, 10.1093/bioinformatics/btv009
Fu, Y., Liu, Z., Lou, S., Bedford, J., Mu, X. J., Yip, K. Y., Khurana, E. and Gerstein, M. (2014) FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biol., 15, 480
Khurana, E., Fu, Y., Colonna, V., Mu, X. J., Kang, H. M., Lappalainen, T., Sboner, A., Lochovsky, L., Chen, J., Harmanci, A., et al. (2013) Integrative annotation of variants from 1092 humans: application to cancer genomics. Science, 342, 1235587
Lehmann, K.-V. and Chen, T. (2013) Exploring functional variant discovery in non-coding regions with SInBaD. Nucleic Acids Res., 41, e7
Lee, D., Gorkin, D. U., Baker, M., Strober, B. J., Asoni, A. L., McCallion, A. S. and Beer, M. A. (2015) A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet., 47, 955–961
Ritchie, G. R., Dunham, I., Zeggini, E. and Flicek, P. (2014) Functional annotation of noncoding sequence variants. Nat. Methods, 11, 294–296
Zhang, F. and Lupski, J. R. (2015) Noncoding genetic variants in human disease. Hum. Mol. Genet.
Lupski, J. R. (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet., 14, 417–422
Lee, C. and Morton, C. C. (2008) Structural genomic variation and personalized medicine. N. Engl. J. Med., 358, 740–741
Lupski, J. R. (2009) Genomic disorders ten years on. Genome Med., 1, 42
Sathirapongsasuti, J. F., Lee, H., Horst, B. A. J., Brunner, G., Cochran, A. J., Binder, S., Quackenbush, J. and Nelson, S. F. (2011) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics, 27, 2648–2654
Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., Handsaker, R. E., McCarroll, S. A., O’Donovan, M. C., Owen, M. J., et al. (2012) Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am. J. Hum. Genet., 91, 597–607
Zong, C., Lu, S., Chapman, A. R. and Xie, X. S. (2012) Genomewide detectionof single-nucleotide and copy-number variations of a single humancell. Science, 338, 1622–1626
Cardon, L. R. and Bell, J. I. (2001) Association study designs for complex diseases. Nat. Rev. Genet., 2, 91–99
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., et al. (2009) Finding the missing heritability of complex diseases. Nature, 461, 747–753
Schork, N. J., Murray, S. S., Frazer, K. A. and Topol, E. J. (2009) Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev., 19, 212–219
Spain, S. L. and Barrett, J. C. (2015) Strategies for fine-mapping complex traits. Hum. Mol. Genet.
CONVERGE consortium (2015) Sparse whole-genome sequencing identifiestwo loci for major depressive disorder. Nature, 523, 588–591.
Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I. and Heckerman, D. (2011) FaST linear mixed models for genome-wide association studies. Nat. Methods, 8, 833–835
Widmer, C., Lippert, C., Weissbrod, O., Fusi, N., Kadie, C., Davidson, R., Listgarten, J. and Heckerman, D. (2014) Further improvements to linear mixed models for genome-wide association studies. Sci. Rep., 4, 6874
Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet., 89, 82–93
Taylor, P. N., Porcu, E., Chew, S., Campbell, P. J., Traglia, M., Brown, S. J., Mullin, B. H., Shihab, H. A., Min, J., Walter, K., et al. (2015) Whole-genome sequence-based analysis of thyroid function. Nat. Commun., 6, 5681
Morrison, A. C., Voorman, A., Johnson, A. D., Liu, X. M., Yu, J., Li, A., Muzny, D., Yu, F. L., Rice, K., Zhu, C. S., et al. (2013) Whole genome sequence-based analysis of a model complex trait, high density lipoprotein cholesterol. Nat. Genet., 45, 899–901
Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet., 13, 135–145
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., et al. (2010) Common SNPs explain a large proportion of the heritability for human height. Nat. Genet., 42, 565–569
Li, Y., Sidore, C., Kang, H. M., Boehnke, M. and Abecasis, G. R. (2011) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res., 21, 940–951
Edwards, S. L., Beesley, J., French, J. D. and Dunning, A. M. (2013) Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet., 93, 779–797
Farh, K. K.-H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley, W. J., Beik, S., Shoresh, N., Whitton, H., Ryan, R. J. H., Shishkin, A. A., et al. (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature, 518, 337–343
Maller, J. B., McVean, G., Byrnes, J., Vukcevic, D., Palin, K., Su, Z., Howson, J.M. M., Auton, A., Myers, S., Morris, A., et al. (2012) Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet., 44, 1294–1301
Barbieri, C. E., Baca, S. C., Lawrence, M. S., Demichelis, F., Blattner, M., Theurillat, J.-P., White, T. A., Stojanov, P., Van Allen, E., Stransky, N., et al. (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet., 44, 685–689
Wang, K., Kan, J., Yuen, S. T., Shi, S. T., Chu, K. M., Law, S., Chan, T. L., Kan, Z., Chan, A. S. Y., Tsui, W. Y., et al. (2011) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet., 43, 1219–1223
Nakagawa, H., Wardell, C. P., Furuta, M., Taniguchi, H. and Fujimoto, A. (2015) Cancer whole-genome sequencing: present and future. Oncogene, 34, 5943–5950
Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L. and Garraway, L. A. (2013) Highly recurrent TERT promoter mutations in human melanoma. Science, 339, 957–959
Vinagre, J., Almeida, A., Pópulo, H., Batista, R., Lyra, J., Pinto, V., Coelho, R., Celestino, R., Prazeres, H., Lima, L., et al. (2013) Frequency of TERT promoter mutations in human cancers. Nat. Commun., 4, 2185
Mansour, M. R., Abraham, B. J., Anders, L., Berezovskaya, A., Gutierrez, A., Durbin, A. D., Etchin, J., Lawton, L., Sallan, S. E., Silverman, L. B., et al. (2014) An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 346, 1373–1377
Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. and Lee, W. (2014) Genome-wide analysis of noncoding regulatory mutationsin cancer. Nat. Genet., 46, 1160–1165
Fredriksson, N. J., Ny, L., Nilsson, J. A. and Larsson, E. (2014) Systematic analysisof noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet., 46, 1258–1263
Melton, C., Reuter, J. A., Spacek, D. V. and Snyder, M. (2015) Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat. Genet., 47, 710–716
Li, B. and Leal, S. M. (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet., 83, 311–321
Lin, D.-Y. and Tang, Z.-Z. (2011) A general framework for detecting disease associations with rare variants in sequencing studies. Am. J. Hum. Genet., 89, 354–367
Gonzalez-Perez, A., Mustonen, V., Reva, B., Ritchie, G. R. S., Creixell, P., Karchin, R., Vazquez, M., Fink, J. L., Kassahn, K. S., Pearson, J. V., et al. (2013) Computational approaches to identify functional genetic variants in cancer genomes. Nat. Methods, 10, 723–729
Albert, F.W. and Kruglyak, L. (2015) The role of regulatory variation in complex traits and disease. Nat. Rev. Genet., 16, 197–212
Li, M. J., Yan, B., Sham, P. C., and Wang, J.W. (2014) Exploring the function of genetic variants in the non-codinggenomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief. Bioinform., 16, 393–412
Ward, L. D. and Kellis, M. (2012) Interpreting noncoding genetic variation in complex traitsand human disease. Nat. Biotechnol., 30, 1095–1106
Rockman, M. V. and Kruglyak, L. (2006) Genetics of global gene expression. Nat. Rev. Genet., 7, 862–872
Degner, J. F., Pai, A. A., Pique-Regi, R., Veyrieras, J.-B., Gaffney, D. J., Pickrell, J. K., De Leon, S., Michelini, K., Lewellen, N., Crawford, G. E., et al. (2012) D Nase I sensitivity QTLs area major determinant of human expression variation. Nature, 482, 390–394
Monlong, J., Calvo, M., Ferreira, P. G. and Guigó, R. (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun., 5, 4698
Koren, A., Handsaker, R. E., Kamitaki, N., Karlic, R., Ghosh, S., Polak, P., Eggan, K. and McCarroll, S. A. (2014) Genetic variation in human DNA replication timing. Cell, 159, 1015–1026
del Rosario, R. C.-H., Poschmann, J., Rouam, S. L., Png, E., Khor, C. C., Hibberd, M. L. and Prabhakar, S. (2015) Sensitive detection of chromatin-altering polymorphisms reveals autoimmune diseasemechanisms. Nat. Methods, 12, 458–464
Gibbs, J. R., van der Brug, M. P., Hernandez, D. G., Traynor, B. J., Nalls, M. A., Lai, S.-L., Arepalli, S., Dillman, A., Rafferty, I. P., Troncoso, J., et al. (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet., 6, e1000952
Lappalainen, T., Sammeth, M., Friedländer, M. R., ‘t Hoen, P. A. C., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., et al., (2013) Transcriptome and genome sequencing uncovers functional variationin humans. Nature, 501, 506–511
Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., Reynolds, A. P., Sandstrom, R., Qu, H., Brody, J., et al. (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science, 337, 1190–1195
Maurano, M. T., Haugen, E., Sandstrom, R., Vierstra, J., Shafer, A., Kaul, R. and Stamatoyannopoulos, J. A. (2015) Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo. Nat. Genet., 47, 1393–1401
Kasowski, M., Grubert, F., Heffelfinger, C., Hariharan, M., Asabere, A., Waszak, S. M., Habegger, Lukas., Rozowsky, J., Shi, M., Urban, A. E., et al. (2010) Variation in transcription factor binding among humans. Science 328, 232–235
Karczewski, K. J., Dudley, J. T., Kukurba, K. R., Chen, R., Butte, A. J., Montgomery, S. B. and Snyder, M. (2013) Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA, 110, 9607–9612
Chiang, C., Layer, R. M., Faust, G. G., Lindberg, M. R., Rose, D. B., Garrison, E. P., Marth, G. T., Quinlan, A. R. and Hall, I. M. (2014) SpeedSeq: Ultra-fast personal genome analysis and interpretation. Nat. Meth., 12, 966–968
Park, P. J. (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
Song, L. and Crawford, G. E. (2010) DNase-seq: a high-resolution technique for mapping activegene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. pdb. prot5384
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. and Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 10, 1213–1218
dbWGFP: http://bioinfo.au.tsinghua.edu.cn/dbwgfp
Biesecker, L. G. (2013) Hypothesis-generating research and predictive medicine. Genome Res., 23, 1051–1053
Simon, R. (2011) Genomic biomarkers in predictive medicine. An interim analysis. EMBO Mol. Med., 3, 429–435
Matsui, S., Simon, R., Qu, P., Shaughnessy, J. D., Barlogie, B. and Crowley, J. (2012) Developing and validating continuous genomic signatures in randomized clinical trials for predictive medicine. Clin. Cancer Res., 18, 6065–6073
Collins, F. S. and Varmus, H. (2015) A new initiative on precision medicine. N. Engl. J. Med., 372, 793–795
Rubin, M. A. (2015) Health: Make precision medicine work for cancer care. Nature, 520, 290–291
Bellmunt, J., Orsola, A. and Sonpavde, G. (2015) Precision and predictive medicine in urothelial cancer: Are we making progress? Eur. Urol., 68, 547–549
Geschwind, D. H. and State, M. W. (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol., 14, 1109–1120
Mak, H. C. (2012) Genome interpretation and assembly—recent progress and next steps. Nat. Biotechnol., 30, 1081–1083
Shendure, J. and Aiden, E. L. (2012) The expanding scope of DNA sequencing. Nat. Biotechnol., 30, 1084–1094
Fujimoto, A., Nakagawa, H., Hosono, N., Nakano, K., Abe, T., Boroevich, K. A., Nagasaki, M., Yamaguchi, R., Shibuya, T., Kubo, M., et al. (2010) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat. Genet., 42, 931–936
Gonzaga-Jauregui, C., Lupski, J. R. and Gibbs, R. A. (2012) Human genome sequencing in health and disease. Annu. Rev. Med., 63, 35–61
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is dedicated to the Special Collection of Recent Advances in Next-Generation Bioinformatics (Ed. Xuegong Zhang).
Rights and permissions
About this article
Cite this article
Wu, J., Wu, M., Chen, T. et al. Whole genome sequencing and its applications in medical genetics. Quant Biol 4, 115–128 (2016). https://doi.org/10.1007/s40484-016-0067-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40484-016-0067-0
Keywords
- whole genome sequencing
- whole exome sequencing
- next-generation sequencing
- non-coding
- regulatory variant