Quantitative Biology

, Volume 4, Issue 1, pp 58–67 | Cite as

Integrative clustering methods of multi-omics data for molecule-based cancer classifications

Review

Abstract

One goal of precise oncology is to re-classify cancer based on molecular features rather than its tissue origin. Integrative clustering of large-scale multi-omics data is an important way for molecule-based cancer classification. The data heterogeneity and the complexity of inter-omics variations are two major challenges for the integrative clustering analysis. According to the different strategies to deal with these difficulties, we summarized the clustering methods as three major categories: direct integrative clustering, clustering of clusters and regulatory integrative clustering. A few practical considerations on data pre-processing, post-clustering analysis and pathway-based analysis are also discussed.

Keywords

clustering cancer classification omics integrative analysis 

References

  1. 1.
    Garraway, L. A., Verweij, J. and Ballman, K. V. (2013) Precision oncology: an overview. J. Clin. Oncol., 31, 1803–1805CrossRefPubMedGoogle Scholar
  2. 2.
    Shrager, J. and Tenenbaum, J. M. (2014) Rapid learning for precision oncology. Nat. Rev. Clin. Oncol., 11, 109–118CrossRefPubMedGoogle Scholar
  3. 3.
    Hoadley, K. A., Yau, C.,Wolf, D. M., Cherniack, A. D., Tamborero, D., Ng, S., Leiserson, M. D., Niu, B., McLellan, M. D., Uzunangelov, V., et al. (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 158, 929–944CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A. and Kim, D. (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet., 16, 85–97CrossRefPubMedGoogle Scholar
  5. 5.
    Liu, Z., Zhang, X. S. and Zhang, S. (2014) Breast tumor subgroups reveal diverse clinical prognostic power. Sci. Rep., 4, 4002PubMedGoogle Scholar
  6. 6.
    Han, L., Yuan, Y., Zheng, S., Yang, Y., Li, J., Edgerton, M. E., Diao, L., Xu, Y., Verhaak, R. G. and Liang, H. (2014) The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat. Commun., 5, 3963PubMedPubMedCentralGoogle Scholar
  7. 7.
    Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., Speed, D., Lynch, A. G., Samarajiwa, S., Yuan, Y., et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486, 346–352PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cancer Genome Atlas, N. (2012) Comprehensive molecular portraits of human breast tumours. Nature, 490, 61–70CrossRefGoogle Scholar
  9. 9.
    Popat, S., Hubner, R. and Houlston, R. S. (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol., 23, 609–618CrossRefPubMedGoogle Scholar
  10. 10.
    Issa, J. P. (2004) CpG island methylator phenotype in cancer. Nat. Rev. Cancer, 4, 988–993CrossRefPubMedGoogle Scholar
  11. 11.
    Kristensen, V. N., Lingjærde, O. C., Russnes, H. G., Vollan, H. K., Frigessi, A. and Børresen-Dale, A. L. (2014) Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer, 14, 299–313CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang, W., Liu, Y., Sun, N., Wang, D., Boyd-Kirkup, J., Dou, X. and Han, J. D. (2013) Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer. Cell Reports, 4, 542–553CrossRefPubMedGoogle Scholar
  13. 13.
    Mo, Q., Wang, S., Seshan, V. E., Olshen, A. B., Schultz, N., Sander, C., Powers, R. S., Ladanyi, M. and Shen, R. (2013) Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA, 110, 4245–4250CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lock, E. F., Hoadley, K. A., Marron, J. S. and Nobel, A. B. (2013) Joint and Individual Variation Explained (Jive) for integrated analysis of multiple data types. Ann. Appl. Stat., 7, 523–542CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wu, D., Wang, D., Gu, J. and Zhang, M. Q. (2015) Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics, 16, 1022.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang, S., Liu, C. C., Li, W., Shen, H., Laird, P. W. and Zhou, X. J. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res., 40, 9379–9391CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Drier, Y., Sheffer, M. and Domany, E. (2013) Pathway-based personalized analysis of cancer. Proc. Natl. Acad. Sci. USA, 110, 6388–6393CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kirk, P., Griffin, J. E., Savage, R. S., Ghahramani, Z. and Wild, D. L. (2012) Bayesian correlated clustering to integrate multiple datasets. Bioinformatics, 28, 3290–3297CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lock, E. F. and Dunson, D. B. (2013) Bayesian consensus clustering. Bioinformatics, 29, 2610–2616CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B. and Goldenberg, A. (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods, 11, 333–337CrossRefPubMedGoogle Scholar
  21. 21.
    Vaske, C. J., Benz, S. C., Sanborn, J. Z., Earl, D., Szeto, C., Zhu, J., Haussler, D. and Stuart, J. M. (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics, 26, i237–i245CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shen, R., Olshen, A. B. and Ladanyi, M. (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 25, 2906–2912CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang, S., Li, Q., Liu, J. and Zhou, X. J. (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 27, i401–i409CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Candes, E. J., Li, X. D., Ma, Y. and Wright, J. (2011) Robust principal component analysis? J. ACM, 58Google Scholar
  25. 25.
    Boyd, S. Parikh, N. Chu, E. Peleato, A B. Eckstein (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 1–122CrossRefGoogle Scholar
  26. 26.
    Candès, E. J. and Recht, B. (2009) Exact matrix completion via convex optimization. Found. Comput. Math., 9, 717–772CrossRefGoogle Scholar
  27. 27.
    Cai, J. F., Candes, E. J. and Shen, Z. W. (2010) A singular value thresholding algorithm for matrix completion. SIAM J. Optim., 20, 1956–1982.CrossRefGoogle Scholar
  28. 28.
    Zhou, X., Liu, J., Wan, X. and Yu, W. (2014) Piecewise-constant and low-rank approximation for identification of recurrent copy number variations. Bioinformatics, 30, 1943–1949CrossRefPubMedGoogle Scholar
  29. 29.
    Chung, N. C. and Storey, J. D. (2015) Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics, 31, 545–554CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Linting, M., van Os, B. J. and Meulman, J. J. (2011) Statistical significance of the contribution of variables to the PCA solution: an alternative permutation strategy. Psychometrika, 76, 440–460.CrossRefGoogle Scholar
  31. 31.
    Friedman, J., Hastie, T. and Tibshirani, R. (2009) The Elements of Statistical Learning. New York: Springer-VerlagGoogle Scholar
  32. 32.
    Jain, A. K., Murty, M. N., and Flynn, P. J. (1999) Data clustering: a review. ACM computing surveys (CSUR), 31, 264–323CrossRefGoogle Scholar
  33. 33.
    Han, J., Kamber, M. and Pei, J. (2011) Data mining: concepts and techniques: concepts and techniques. San Francisco: Morgan KaufmannGoogle Scholar
  34. 34.
    Rodriguez, A. and Laio, A. (2014) Clustering by fast search and find of density peaks. Science, 344, 1492–1496CrossRefPubMedGoogle Scholar
  35. 35.
    Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003) Latent dirichlet allocation. J. Mach. Learn. Res., 3, 993–1022Google Scholar
  36. 36.
    Nguyen, X. and Gelfand, A. E. (2011) The Dirichlet labeling process for clustering functional data. Stat. Sin., 21, 1249–1289.CrossRefGoogle Scholar
  37. 37.
    Dahl, D. B. (2006) Model-based clustering for expression data via a Dirichlet process mixture model. In Bayesian inference for gene expression and proteomics, 201–218, Cambridge: Cambridge University PressCrossRefGoogle Scholar
  38. 38.
    Savage, R. S., Ghahramani, Z., Griffin, J. E., Kirk, P. and Wild, D. L. (2013) Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data. arXiv:1304.3577Google Scholar
  39. 39.
    Nguyen, N. and Caruana, R. (2007) Consensus clusterings. In Data Mining, ICDM 2007. Seventh IEEE International Conference, 607–612Google Scholar
  40. 40.
    Goder, A. and Filkov, V. (2008) Consensus Clustering Algorithms: Comparison and Refinement. in Alenex, SIAM., 109–117Google Scholar
  41. 41.
    Girvan, M. and Newman, M. E. (2002) Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA, 99, 7821–7826CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Newman, M. E. (2006) Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 103, 8577–8582CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ng, A. Y., Jordan, M. I. and Weiss, Y. (2001) On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems. 849–856, Cambridge: MIT PressGoogle Scholar
  44. 44.
    von Luxburg, U. (2007) A tutorial on spectral clustering. Stat. Comput., 17, 395–416.CrossRefGoogle Scholar
  45. 45.
    Enright, A. J., van Dongen, S. and Ouzounis, C. A. (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res., 30, 1575–1584CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Levandowsky, M. and Winter, D. (1971) Distance between sets. Nature, 234, 34–35.CrossRefGoogle Scholar
  47. 47.
    Hubert, L. and Arabie, P. (1985) Comparing partitions. J. Classif., 2, 193–218.CrossRefGoogle Scholar
  48. 48.
    Alizadeh, A. A., Aranda, V., Bardelli, A., Blanpain, C., Bock, C., Borowski, C., Caldas, C., Califano, A., Doherty, M., Elsner, M., et al. (2015) Toward understanding and exploiting tumor heterogeneity. Nat. Med., 21, 846–853CrossRefPubMedGoogle Scholar
  49. 49.
    Kan, Z., Jaiswal, B. S., Stinson, J., Janakiraman, V., Bhatt, D., Stern, H. M., Yue, P., Haverty, P. M., Bourgon, R., Zheng, J., et al. (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466, 869–873CrossRefPubMedGoogle Scholar
  50. 50.
    Lohr, J. G., Stojanov, P., Lawrence, M. S., Auclair, D., Chapuy, B., Sougnez, C., Cruz-Gordillo, P., Knoechel, B., Asmann, Y.W., Slager, S. L., et al. (2012) Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA, 109, 3879–3884CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A., Carter, S. L., Stewart, C., Mermel, C. H., Roberts, S. A., et al. (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 499, 214–218CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Villanueva, A., Portela, A., Sayols, S., Battiston, C., Hoshida, Y., Méndez-González, J., Imbeaud, S., Letouzé, E., Hernandez-Gea, V., Cornella, H., et al. (2015) DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology, 61, 1945–1956CrossRefPubMedGoogle Scholar
  53. 53.
    Eifert, C. and Powers, R. S. (2012) From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets. Nat. Rev. Cancer, 12, 572–578CrossRefPubMedGoogle Scholar
  54. 54.
    Sanchez-Garcia, F., Villagrasa, P., Matsui, J., Kotliar, D., Castro, V., Akavia, U. D., Chen, B. J., Saucedo-Cuevas, L., Rodriguez Barrueco, R., Llobet-Navas, D., et al. (2014) Integration of genomic data enables selective discovery of breast cancer drivers. Cell, 159, 1461–1475CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelsen, T. S., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G., et al. (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343, 84–87CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Jiang, P., Wang, H., Li, W., Zang, C., Li, B., Wong, Y. J., Meyer, C., Liu, J. S., Aster, J. C. and Liu, X. S. (2015) Network analysis of gene essentiality in functional genomics experiments. Genome Biol., 16, 239CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chen, J. C., Alvarez, M. J., Talos, F., Dhruv, H., Rieckhof, G. E., Iyer, A., Diefes, K. L., Aldape, K., Berens, M., Shen, M. M., et al. (2014) Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell, 159, 402–414CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fehrmann, R. S., Karjalainen, J. M., Krajewska, M., Westra, H. J., Maloney, D., Simeonov, A., Pers, T. H., Hirschhorn, J. N., Jansen, R. C., Schultes, E. A., et al. (2015) Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet., 47, 115–125CrossRefPubMedGoogle Scholar
  59. 59.
    Rockman, M. V. and Kruglyak, L. (2006) Genetics of global gene expression. Nat. Rev. Genet., 7, 862–872CrossRefPubMedGoogle Scholar
  60. 60.
    Akavia, U. D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., Causton, H. C., Pochanard, P., Mozes, E., Garraway, L. A. and Pe’er, D. (2010) An integrated approach to uncover drivers of cancer. Cell, 143, 1005–1017CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Li, Q., Seo, J. H., Stranger, B., McKenna, A., Pe’er, I., Laframboise, T., Brown, M., Tyekucheva, S. and Freedman, M. L. (2013) Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell, 152, 633–641CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cancer Genome Atlas Research Network. (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell, 159, 676–690CrossRefGoogle Scholar
  63. 63.
    Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., Geman, D., Baggerly, K. and Irizarry, R. A. (2010) Tackling the widespread and critical impact of batch effects in highthroughput data. Nat. Rev. Genet., 11, 733–739CrossRefPubMedGoogle Scholar
  64. 64.
    Eisenberg, E. and Levanon, E. Y. (2003) Human housekeeping genes are compact. Trends Genet., 19, 362–365CrossRefPubMedGoogle Scholar
  65. 65.
    van der Maaten, L. and Hinton, G. (2008) Visualizing Data using t- SNE. J. Mach. Learn. Res., 9, 2579–2605.Google Scholar
  66. 66.
    Hoyer, P. O. (2004) Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res., 5, 1457–1469.Google Scholar
  67. 67.
    Lee, D. D. and Seung, H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791CrossRefPubMedGoogle Scholar
  68. 68.
    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. and Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res., 40, D109–D114CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., et al. (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res., 39, D691–D697CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., Holland, T. A., Keseler, I. M., Kothari, A., Kubo, A., et al. (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res., 42, D459–D471CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Livshits, A., Git, A., Fuks, G., Caldas, C. and Domany, E. (2015) Pathway-based personalized analysis of breast cancer expression data. Mol. Oncol., 9, 1471–1483CrossRefPubMedGoogle Scholar
  72. 72.
    Tarca, A. L., Draghici, S., Khatri, P., Hassan, S. S., Mittal, P., Kim, J. S., Kim, C. J., Kusanovic, J. P. and Romero, R. (2009) A novel signaling pathway impact analysis. Bioinformatics, 25, 75–82CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Paull, E. O., Carlin, D. E., Niepel, M., Sorger, P. K., Haussler, D. and Stuart, J. M. (2013) Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics, 29, 2757–2764CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hofree, M., Shen, J. P., Carter, H., Gross, A. and Ideker, T. (2013) Network-based stratification of tumor mutations. Nat. Methods, 10, 1108–1115CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Liu, Z. and Zhang, S. (2015) Tumor characterization and stratification by integrated molecular profiles reveals essential pan-cancer features. BMC Genomics, 16, 503CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Cancer Genome Atlas Research Network, Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., Shmulevich, I., Sander, C. andStuart, J. M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet., 45, 1113–1120CrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cancer Genome Atlas Research Network. (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513, 202–209CrossRefGoogle Scholar
  78. 78.
    Yuan, Y., van Allen, E. M., Omberg, L., Wagle, N., Amin-Mansour, A., Sokolov, A., Byers, L. A., Xu, Y., Hess, K. R., Diao, L., et al. (2014) Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol., 32, 644–652CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Wold, S., Martens, H. and Wold, H. (1983) The multivariate calibrationproblem in chemistry solved by the Pls Method. Lect. Notes Math., 973, 286–293.CrossRefGoogle Scholar
  80. 80.
    Bastien, P., Bertrand, F., Meyer, N. and Maumy-Bertrand, M. (2015) Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data. Bioinformatics, 31, 397–404CrossRefPubMedGoogle Scholar
  81. 81.
    Aronson, S. J. and Rehm, H. L. (2015) Building the foundation for genomics in precision medicine. Nature, 526, 336–342CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2016

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Tsinghua National Laboratory for Information Science and Technology/Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations