Advertisement

Quantitative Biology

, Volume 2, Issue 1, pp 1–29 | Cite as

Modeling stochastic noise in gene regulatory systems

  • Arwen Meister
  • Chao Du
  • Ye Henry Li
  • Wing Hung WongEmail author
Review

Abstract

The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steadystates are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems.

Keywords

gene regulation stochastic modeling simulation Master equation Gillespie algorithm Langevin equation 

References

  1. 1.
    Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. U.S.A., 99, 12795–12800.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Paulsson, J. (2004) Summing up the noise in gene networks. Nature, 427, 415–418.PubMedCrossRefGoogle Scholar
  3. 3.
    Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Sci. Signal., 297, 1183.Google Scholar
  4. 4.
    Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. and van Oudenaarden, A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Blake, W. J., Kaern, M., Cantor, C. R. and Collins, J. J. (2003) Noise in eukaryotic gene expression. Nature, 422, 633–637PubMedCrossRefGoogle Scholar
  6. 6.
    Rao, C. V., Wolf, D. M. and Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise. Nature, 420, 231–237.PubMedCrossRefGoogle Scholar
  7. 7.
    Kaern, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451–464.PubMedCrossRefGoogle Scholar
  8. 8.
    Raj, A. and van Oudenaarden, A. (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 135, 216–226.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Munsky, B., Neuert, G. and van Oudenaarden, A. (2012) Using gene expression noise to understand gene regulation. Science, 336, 183–187.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Hager, G. L., McNally, J. G. and Misteli, T. (2009) Transcription dynamics. Mol. Cell, 35, 741–753.PubMedCrossRefGoogle Scholar
  11. 11.
    Kittisopikul, M. and Süel, G. M. (2010) Biological role of noise encoded in a genetic network motif. Proc. Natl. Acad. Sci. U.S.A., 107, 13300–13305.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Pedraza, J. M. and van Oudenaarden, A. (2005) Noise propagation in gene networks. Science, 307, 1965–1969.PubMedCrossRefGoogle Scholar
  13. 13.
    Kepler, T. B. and Elston, T. C. (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J., 81, 3116–3136.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ma, R., Wang, J., Hou, Z. and Liu, H. (2012) Small-number effects: a third stable state in a genetic bistable toggle switch. Phys. Rev. Lett., 109, 248107.PubMedCrossRefGoogle Scholar
  15. 15.
    Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338.PubMedCrossRefGoogle Scholar
  16. 16.
    Gardner, T., Cantor, C. and Collins, J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342.PubMedCrossRefGoogle Scholar
  17. 17.
    Hasty, J., McMillen, D. and Collins, J. J. (2002) Engineered gene circuits. Nature, 420, 224–230.PubMedCrossRefGoogle Scholar
  18. 18.
    Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. and Van Oudenaarden, A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740.PubMedCrossRefGoogle Scholar
  19. 19.
    Frigola, D., Casanellas, L., Sancho, J. M. and Ibañes, M. (2012) Asymmetric stochastic switching driven by intrinsic molecular noise. PLoS ONE, 7, e31407.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Novak, B. and Tyson, J. J. (1997) Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. U.S.A., 94, 9147–9152.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Arkin, A., Ross, J. and McAdams, H. H. (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambdainfected Escherichia coli cells. Genetics, 149, 1633–1648.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Thattai, M. and van Oudenaarden, A. (2001) Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. U.S.A., 98, 8614–8619.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Tao, Y. (2004) Intrinsic noise, gene regulation and steady-state statistics in a two gene network. J. Theor. Biol., 231, 563–568.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. and Elowitz, M. B. (2005) Gene regulation at the single-cell level. Sci. Signal., 307, 1962.Google Scholar
  25. 25.
    Krishnamurthy, S., Smith, E., Krakauer, D., Fontana, W. (2007) The stochastic behavior of a molecular switching circuit with feedback. Biol. Direct, 2, 1–17.CrossRefGoogle Scholar
  26. 26.
    Munsky, B., Trinh, B. and Khammash, M. (2009) Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol., 5, 318.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Dunlop, M. J., Cox, R. S. 3rd, Levine, J. H., Murray, R.M. and Elowitz, M. B. (2008) Regulatory activity revealed by dynamic correlations in gene expression noise. Nat. Genet., 40, 1493–1498.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Stewart-Ornstein, J., Weissman, J. S. and El-Samad, H. (2012) Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell, 45, 483–493.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Van Kampen, N. G. Stochastic Processes in Physics and Chemistry. (3rd, Ed). North Holland, 2007.Google Scholar
  30. 30.
    Peles, S., Munsky, B. and Khammash, M. (2006) Reduction and solution of the chemical Master equation using time scale separation and finite state projection. J. Chem. Phys., 125, 204104.PubMedCrossRefGoogle Scholar
  31. 31.
    Hegland, M., Burden, C., Santoso, L., MacNamara, S. and Booth, H. (2007) A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math., 205, 708–724.CrossRefGoogle Scholar
  32. 32.
    Macnamara, S., Bersani, A. M., Burrage, K. and Sidje, R. B. (2008) Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys., 129, 095105.PubMedCrossRefGoogle Scholar
  33. 33.
    Smadbeck, P. and Kaznessis, Y. (2012) Stochastic model reduction using a modified Hill-type kinetic rate law. J. Chem. Phys., 137, 234109.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Waldherr, S., Wu, J. and Allgöwer, F. (2010) Bridging time scales in cellular decision making with a stochastic bistable switch. BMC Syst. Biol., 4, 108.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Liang, J. and Qian, H. (2010) Computational cellular dynamics based on the chemical master equation: A challenge for understanding complexity. Journal of Computer Science and Technology, 25, 154–168.CrossRefGoogle Scholar
  36. 36.
    Gutierrez, P. S., Monteoliva, D. and Diambra, L. (2012) Cooperative binding of transcription factors promotes bimodal gene expression response. PLoS ONE, 7, e44812.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Khanin, R. and Higham, D. J. (2008) Chemical Master Equation and Langevin regimes for a gene transcription model. Theor. Comput. Sci., 408, 31–40.CrossRefGoogle Scholar
  38. 38.
    Meister, A., Li, Y. H., Choi, B. and Wong, W. H. (2013) Learning a nonlinear dynamical system model of gene regulation: A perturbed steady-state approach. Ann. Appl. Stat., 7, 1311–1333.CrossRefGoogle Scholar
  39. 39.
    Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J. J. and Gardner, T. S. (2007) Largescale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol., 5, e8.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Bansal, M., Belcastro, V., Ambesi-Impiombato, A. and di Bernardo, D. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 78.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gardner, T. S., di Bernardo, D., Lorenz, D. and Collins, J. J. (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301, 102–105.PubMedCrossRefGoogle Scholar
  42. 42.
    di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., Elliott, S. J., Schaus, S. E. and Collins, J. J. (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol., 23, 377–383.PubMedCrossRefGoogle Scholar
  43. 43.
    Michaelis, L. and Menten, M. L. (1913) Die kinetik der invertinwirkung. Biochem. Z., 49, 333–369.Google Scholar
  44. 44.
    Hill, A. V. (1913) The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem. J., 7, 471–480.PubMedGoogle Scholar
  45. 45.
    Ackers, G. K., Johnson, A. D. and Shea, M. A. (1982) Quantitative model for gene regulation by lambda phage repressor. Proc. Natl. Acad. Sci. U.S.A., 79, 1129–1133.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Shea, M. A. and Ackers, G. K. (1985) The OR control system of bacteriophage lambda: A physicalchemical model for gene regulation. J. Mol. Biol., 181, 211–230.PubMedCrossRefGoogle Scholar
  47. 47.
    Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J. and Phillips, R. (2005) Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev., 15, 116–124.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J., Kuhlman, T. and Phillips, R. (2005) Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev., 15, 125–135.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Rao, C. V. and Arkin, A. P.(2003) Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys., 118, 4999–5010.CrossRefGoogle Scholar
  50. 50.
    Walker, J. A. Dynamical Systems and Evolution Equations. New York: Plenum Press, 1939.Google Scholar
  51. 51.
    Kubo, R., Matsuo, K. and Kitahara, K. (1973) Fluctuation and relaxation of macrovariables. J. Stat. Phys., 9, 51–96.CrossRefGoogle Scholar
  52. 52.
    Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.CrossRefGoogle Scholar
  53. 53.
    Gillespie, D. T. (2000) The chemical Langevin equation. J. Chem. Phys., 113, 297.CrossRefGoogle Scholar
  54. 54.
    Komorowski, M., Finkenstädt, B., Harper, C. V. and Rand, D. A. (2009) Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinformatics, 10, 343.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Choi, B. Learning networks in biological systems, Ph.D. thesis, Department of Applied Physics, Stanford University, Stanford, 2012.Google Scholar
  56. 56.
    Planck, M. and Verband Deutscher Physikalischer Gesellschaften. Physikalische abhandlungen und vorträge. 1958.Google Scholar
  57. 57.
    Lord Rayleigh. (1891) Liii. Dynamical problems in illustration of the theory of gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32, 424–445.CrossRefGoogle Scholar
  58. 58.
    Einstein, A. (1906) Eine neue bestimmung der molek uldimensionen. Annalen der Physik, 324, 289–306.CrossRefGoogle Scholar
  59. 59.
    Von Smoluchowski, M. (1906). Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Annalen der physik, 326, 756–780.CrossRefGoogle Scholar
  60. 60.
    Van Kampen, N. G. Fluctuations in Nonlinear Systems. Fluctuation Phenomena in Solids, New York: Academic Press, 1965.Google Scholar
  61. 61.
    Bar-Haim, A. and Klafter, J. (1998) Geometric versus energetic competition in light harvesting by dendrimers. J. Phys. Chem. B, 102, 1662–1664.CrossRefGoogle Scholar
  62. 62.
    Chickarmane, V. and Peterson, C. (2008) A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS ONE, 3, e3478.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Zavlanos, M. M., Julius, A. A., Boyd, S. P. and Pappas, G. J. (2011) Inferring stable genetic networks from steady-state data. Automatica, 47, 1113–1122.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2014

Authors and Affiliations

  • Arwen Meister
    • 1
  • Chao Du
    • 1
  • Ye Henry Li
    • 1
  • Wing Hung Wong
    • 1
    Email author
  1. 1.Computational Biology Lab, Bio-X ProgramStanford UniversityStanfordUSA

Personalised recommendations