Skip to main content
Log in

Morphological characteristics of the patellar tendon in runners, cyclists, triathletes, and physically active individuals

  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

The objective of the study was to compare measurements of length, thickness, and cross-section area (CSA) of the patellar tendon (PT) among cyclists, runners, triathletes, and physically active individuals (control group). Forty healthy individuals (10 cyclists, 10 runners, 10 triathletes, and 10 physically active individuals) aged between 18 and 45 years (30.3 ± 8.6 years) participated in the study. PT was measured by a B-mode ultrasound system. To measure the length and thickness (in 5, 10, 15, and 20 mm of the PT length) the probe was positioned parallel to the tendon and to measure the CSA the probe was positioned perpendicularly in 25, 50, and 75% of the PT length. PT length data were analyzed using a one-way ANOVA to compare between groups and PT CSA and thickness were analyzed using a two-way ANOVA (group vs. position) to compare the variables among the groups with the post-hoc Tukey test. All statistical analyses were performed considering p < 0.05. We observed a significant difference, where cyclists had smaller PT thickness (regardless of the location measured) compared to the group of triathletes (p = 0.001) and the physically active group (p = 0.043). All other variables (length, thickness, and CSA) and interactions (local and position) were not significant. We concluded that regardless of the position where PT thickness is measured, cyclists have smaller PT thickness compared to triathletes and physically active individuals but similar when compared to runners. And no differences in the length and CSA of the PT between groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Cohen M, Ferreti M, Marcondes FB, Amaro JT, Ejnisman B (2008) Tendinopatia patelar. Rev Bras Ortop 43(8):309–318. https://doi.org/10.1590/S0102-36162008000800001

    Article  Google Scholar 

  2. Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521(Pt 1):307–313. https://doi.org/10.1111/j.1469-7793.1999.00307.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dan M, Parr W, Broe D, Cross M, Walsh WR (2018) Biomechanics of the knee extensor mechanism and its relationship to patella tendinopathy: a review. J Orthop Res 36(12):3105–3112. https://doi.org/10.1002/jor.24120

    Article  PubMed  Google Scholar 

  4. Ueno H, Suga T, Takao K, Tanaka T, Miyake Y, Kusagawa Y et al (2021) Association between patellar tendon moment arm and running performance in endurance runners. Physiol Rep 9(15):e14981. https://doi.org/10.14814/phy2.14981

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hunter GR, Katsoulis K, McCarthy JP et al (2011) Tendon length and joint flexibility are related to running economy. Med Sci Sports Exerc 43(8):1492–1499. https://doi.org/10.1249/MSS.0b013e318210464a

    Article  PubMed  Google Scholar 

  6. McCarthy JP, Hunter GR, Larson-Meyer DE, Bamman MM, Landers KA, Newcomer BR (2006) Ethnic differences in triceps surae muscle-tendon complex and walking economy. J Strength Cond Res 20(3):511–518. https://doi.org/10.1519/17395.1

    Article  PubMed  Google Scholar 

  7. Biewener AA, Roberts TJ (2000) Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc Sport Sci Rev 28(3):99–107 (PMID: 10916700)

    CAS  PubMed  Google Scholar 

  8. Intziegianni K, Cassel M, Rauf S et al (2016) Influence of age and pathology on achilles tendon properties during a single-leg jump. Int J Sports Med 37(12):973–978. https://doi.org/10.1055/s-0042-108198

    Article  CAS  PubMed  Google Scholar 

  9. Kulig K, Chang YJ, Winiarski S, Bashford GR (2016) Ultrasound-based tendon micromorphology predicts mechanical characteristics of degenerated tendons. Ultrasound Med Biol 42(3):664–673. https://doi.org/10.1016/j.ultrasmedbio.2015.11.013

    Article  PubMed  Google Scholar 

  10. Cassel M, Intziegianni K, Risch L, Müller S, Engel T, Mayer F (2017) Physiological tendon thickness adaptation in adolescent elite athletes: a longitudinal study. Front Physiol 8:795. https://doi.org/10.3389/fphys.2017.00795

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M et al (2007) Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol 191(2):111–121. https://doi.org/10.1111/j.1748-1716.2007.01714.x

    Article  CAS  Google Scholar 

  12. Seynnes OR, Erskine RM, Maganaris CN et al (2009) Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol 107(2):523–530. https://doi.org/10.1152/japplphysiol.00213.2009

    Article  CAS  PubMed  Google Scholar 

  13. Couppé C, Kongsgaard M, Aagaard P et al (2008) Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J Appl Physiol 105(3):805–810. https://doi.org/10.1152/japplphysiol.90361.2008

    Article  PubMed  Google Scholar 

  14. Cassel M, Müller S, Carlsohn A, Baur H, Jerusel N, Mayer F (2012) Intra- und interobserver Variabilität sonografischer Untersuchungen an Patella- und Achillessehnen [Intra- and interrater variability of sonographic investigations of patella and achilles tendons]. Sportverletz Sportschaden 26(1):21–26. https://doi.org/10.1055/s-0031-1281839

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt WA, Schmidt H, Schicke B, Gromnica-Ihle E (2004) Standard reference values for musculoskeletal ultrasonography. Ann Rheum Dis 63(8):988–994. https://doi.org/10.1136/ard.2003.015081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fredberg U, Bolvig L, Andersen NT, Stengaard-Pedersen K (2008) Ultrasonography in evaluation of Achilles and patella tendon thickness. Ultraschall Med 29(1):60–65. https://doi.org/10.1055/s-2007-963027

    Article  CAS  PubMed  Google Scholar 

  17. Hirschmüller A, Frey V, Deibert P et al (2010) Achilles tendon power Doppler sonography in 953 long distance runners - a cross sectional study. Ultraschall Med 31(4):387–393. https://doi.org/10.1055/s-0029-1245189

    Article  PubMed  Google Scholar 

  18. Cassel M, Müller S, Carlsohn A, Baur H, Jerusel N, Mayer F (2012) Intra- and interrater variability of sonographic investigations of patella and achilles tendons. Sportverletz Sportschaden 26(1):21–26. https://doi.org/10.1055/s-0031-1281839

    Article  CAS  PubMed  Google Scholar 

  19. Malliaras P, Kamal B, Nowell A, Farley T, Dhamu H, Simpson V et al (2013) Patellar tendon adaptation in relation to load-intensity and contraction type. J Biomech 26(46):1893–1899. https://doi.org/10.1016/j.jbiomech.2013.04.022

    Article  Google Scholar 

  20. Golman M, Wright ML, Wong TT, Sean Lynch T, Ahmad CS, Thomopoulos S et al (2020) Rethinking patellar tendinopathy and partial patellar tendon tears: a novel classification system. Am J Sports Med 48(2):359–369. https://doi.org/10.1177/0363546519894333

    Article  PubMed  Google Scholar 

  21. Andarawis-Puri N, Flatow EL, Soslowsky LJ (2015) Tendon basic science: development, repair, regeneration, and healing. J Orthop Res 33(6):780–784. https://doi.org/10.1002/jor.22869

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wiesinger HP, Rieder F, Kösters A, Müller E, Seynnes OR (2016) Are sport-specific profiles of tendon stiffness and cross-sectional area determined by structural or functional integrity? PLoS ONE 11(6):e0158441. https://doi.org/10.1371/journal.pone.0158441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swinnen W, Kipp S, Kram R (2018) Comparison of running and cycling economy in runners, cyclists, and triathletes. Eur J Appl Physiol 118(7):1331–1338. https://doi.org/10.1007/s00421-018-3865-4

    Article  CAS  PubMed  Google Scholar 

  24. Kuoppasalmi K (1980) Plasma testosterone and sex-hormone-binding globulin capacity in physical exercise. Scand J Clin Lab Invest 40(5):411–418. https://doi.org/10.3109/00365518009101863

    Article  CAS  PubMed  Google Scholar 

  25. Coratella G, Beato M, Milanese C, Longo S, Limonta E, Rampichini S et al (2018) Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res 32(4):921–929. https://doi.org/10.1519/JSC.0000000000002463

    Article  PubMed  Google Scholar 

  26. Sanz-López F, Berzosa C, Hita-Contreras F, Martínez-Amat A (2017) Effects of eccentric overload training on patellar tendon and vastus lateralis in three days of consecutive running. Knee 24(3):570–579. https://doi.org/10.1016/j.knee.2017.03.002

    Article  PubMed  Google Scholar 

  27. Cesanelli L, Kamandulis S, Eimantas N, Satkunskiene, (2022) Differences in knee extensors’ muscle-tendon unit passive stiffness, architecture, and force production in competitive cyclists versus runners. J Appl Biomech 38(6):412–423. https://doi.org/10.1123/jab.2022-0072

    Article  PubMed  Google Scholar 

  28. Ueno H, Suga T, Miyake Y, Takao K, Tanaka T, Otsuka M et al (2018) Specific adaptations of patellar and Achilles tendons in male sprinters and endurance runners. Transl Sports Med 1(3):104–109. https://doi.org/10.1002/tsm2.21

    Article  Google Scholar 

  29. Novacheck TF (1998) The biomechanics of running. Gait Posture 7(1):77–95. https://doi.org/10.1016/S0966-6362(97)00038-6

    Article  CAS  PubMed  Google Scholar 

  30. Kenneally-Dabrowski CJB, Brown NAT, Lai AKM, Perriman D, Spratford W, Serpell BG (2019) Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand J Med Sci Sports 29(8):1083–1091. https://doi.org/10.1111/sms.13437

    Article  PubMed  Google Scholar 

  31. Ema R, Akagi R, Wakahara T, Kawakami Y (2016) Training-induced changes in architecture of human skeletal muscles: current evidence and unresolved issues. J Phys Fit Sports Med 5(1):37–46. https://doi.org/10.7600/jpfsm.5.37

    Article  Google Scholar 

  32. Soares LF, Ribeiro LOP, Sexas MTT, Augusto VG, Aquino CF, Pernambuco AP et al (2023) Low back pain and joint position changes in cyclists: a cross-sectional study. Rev Bras Med Esporte 29:e2021_0413. https://doi.org/10.1590/1517-8692202329022021_0413i

    Article  Google Scholar 

  33. Stapelfeldt B, Schwirtz A, Schumacher YO, Hillebrecht M (2004) Workload demands in mountain bike racing. Int J Sports Med 25(4):294–300. https://doi.org/10.1055/s-2004-819937

    Article  CAS  PubMed  Google Scholar 

  34. Klich S, Ficek K, Krymski I, Klimek A, Kawczyński A, Madeleine P et al (2020) Quadriceps and patellar tendon thickness and stiffness in elite track cyclists: an ultrasonographic and myotonometric evaluation. Front Physiol 11(607208):1–12. https://doi.org/10.3389/fphys.2020.607208

    Article  Google Scholar 

  35. Cuba-Dorado A, Álvarez-Yates T, García-García O (2022) Elite triathlete profiles in draft-legal triathlons as a basis for talent identification. Int J Environ Res Public Health 19(2):881. https://doi.org/10.3390/ijerph19020881

    Article  PubMed  PubMed Central  Google Scholar 

  36. Del Coso J, González-Millán C, Salinero JJ, Abián-Vicén J, Soriano L, Garde S et al (2012) Muscle damage and its relationship with muscle fatigue during a half-iron triathlon. PLoS ONE 7(8):1–7. https://doi.org/10.1371/journal.pone.0043280

    Article  CAS  Google Scholar 

  37. Vleck VE, Garbutt G (1998) Injury and training characteristics of male elite, development squad, and club triathletes. Int J Sports Med 19(1):38–42. https://doi.org/10.1055/s-2007-971877

    Article  CAS  PubMed  Google Scholar 

  38. Zwingenberger S, Valladares RD, Walther A, Beck H, Stiehler M, Kirschner S et al (2014) An epidemiological investigation of training and injury patterns in triathletes. J Sports Sci 32(6):583–590. https://doi.org/10.1080/02640414.2013.843018

    Article  PubMed  Google Scholar 

  39. Diefenthaeler F, Candotti CT, Ribeiro J, Oliveira AR (2007) Comparison of absolute and relative phisiological responses of cyclists and triathletes. Revista Brasileira de Medicina do Esporte 13(3):205–208. https://doi.org/10.1590/S1517-86922007000300015

    Article  Google Scholar 

  40. Lunardi M, Furtado FE, Sakugawa RL, Sonda FC, Sampaio LT, Diefenthaeler F (2023) Reliability of a special device for measuring the cross-sectional area of the patellar tendon by ultrasonography. J Ultrasound. https://doi.org/10.1007/s40477-023-00829-w

    Article  PubMed  Google Scholar 

  41. Rosager S, Aagaard P, Dyhre-Poulsen P, Neergaard K, Kjaer M, Magnusson SP (2002) Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports 12:90–98. https://doi.org/10.1034/j.1600-0838.2002.120205.x

    Article  CAS  PubMed  Google Scholar 

  42. Lee HJ, Lee KW, Takeshi K, Lee YW, Kim HJ (2021) Correlation analysis between lower limb muscle architectures and cycling power via ultrasonography. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-021-84870-x

    Article  CAS  Google Scholar 

  43. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed Hillsdale: Lawrence Erlbaum Associates; 1988. ISBN 0-12-179060-6 (Available in: https://books.google.com/books?hl=pt-BR&lr=&id=rEe0BQAAQBAJ&oi=fnd&pg=PP1&ots=sw0WIyUSqc&sig=8kfAf-iDuPEih7FsFWwuQfKlvBQ). Accessed 10 Aug 2023

  44. Pearson SJ, Onambele GN (2006) Influence of time of day on tendon compliance and estimations of voluntary activation levels. Muscle Nerve 33(6):792–800. https://doi.org/10.1002/mus.20529

    Article  PubMed  Google Scholar 

  45. Arampatzis A, Peper A, Bierbaum S, Albracht K (2010) Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain. J Biomech 43(16):3073–3072. https://doi.org/10.1016/j.jbiomech.2010.08.014

    Article  PubMed  Google Scholar 

  46. Arampatzis A, Karamanidis K, Albracht K (2007) Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol 210(Pt 15):2743–2753. https://doi.org/10.1242/jeb.003814

    Article  PubMed  Google Scholar 

  47. Wang JHC (2006) Mechanobiology of tendon. J Biomech 39(9):1563–1582. https://doi.org/10.1016/j.jbiomech.2005.05.011

    Article  PubMed  Google Scholar 

  48. Luo Z, Zhang X, Wang J, Yang Y, Xu Y, Fu W (2019) Changes in ground reaction forces, joint mechanics, and stiffness during treadmill running to fatigue. Appl Sci 9(24):5493. https://doi.org/10.3390/app9245493

    Article  Google Scholar 

  49. Abt JP, Sell TC, Chu Y, Lovalekar M, Burdett RG, Lephart SM (2011) Running kinematics and shock absorption do not change after brief exhaustive running. J Strength Cond Res 25(6):1479–1485. https://doi.org/10.1519/JSC.0b013e3181ddfcf8

    Article  PubMed  Google Scholar 

  50. Bini RR, Hume PA, Lanferdini FJ, Vaz MA (2013) Effects of moving forward or backward on the saddle on knee joint forces during cycling. Phys Ther Sport 14(1):23–27. https://doi.org/10.1016/j.ptsp.2012.02.003

    Article  PubMed  Google Scholar 

  51. Elmer SJ, Barratt PR, Korff T, Martin JC (2011) Joint-specific power production during submaximal and maximal cycling. Med Sci Sports Exerc 43(10):1940–1947. https://doi.org/10.1249/MSS.0b013e31821b00c5

    Article  PubMed  Google Scholar 

  52. Frizziero A, Trainito S, Oliva F, Aldini NN, Masiero S, Maffulli N (2014) The role of eccentric exercise in sport injuries rehabilitation. Br Med Bull 110(1):47–75. https://doi.org/10.1093/bmb/ldu006

    Article  PubMed  Google Scholar 

  53. Rosengarten SD, Cook JL, Bryant AL, Cordy JT, Daffy J, Docking SI (2015) Australian football players’ Achilles tendons respond to game loads within 2 days: an ultrasound tissue characterisation (UTC) study. Br J Sports Med 49:183–187. https://doi.org/10.1136/bjsports-2013-092713

    Article  PubMed  Google Scholar 

  54. Olesen JL, Heinemeier KM, Gemmer C, Kjaer M, Flyvbjerg A, Langberg H (2007) Exercise-dependent IGF-I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis. J Appl Physiol 102:214–220. https://doi.org/10.1152/japplphysiol.01205.2005

    Article  CAS  PubMed  Google Scholar 

  55. Cook JL, Purdam CR (2009) Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med 43:409–416. https://doi.org/10.1136/bjsm.2008.051193

    Article  CAS  PubMed  Google Scholar 

  56. Karamanidis K, Arampatzis A (2006) Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J Biomech 39(3):406–417. https://doi.org/10.1016/j.jbiomech.2004.12.017

    Article  PubMed  Google Scholar 

  57. O’Connor H, Olds T, Maughan RJ, International Association of Athletics Federations (2007) Physique and performance for track and field events. J Sports Sci 25(1):S49–S60. https://doi.org/10.1080/02640410701607296

    Article  PubMed  Google Scholar 

  58. Bohm S, Mersmann F, Arampatzis A (2015) Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open 1:7. https://doi.org/10.1186/s40798-015-0009-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and the National Council of Scientific Research (CNPq) Brazil.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by ML, RLS, FEF, LTS, and FD. The first draft of the manuscript was written by Morgana Lunardi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fernando Diefenthaeler.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunardi, M., Sakugawa, R.L., Furtado, F.E. et al. Morphological characteristics of the patellar tendon in runners, cyclists, triathletes, and physically active individuals. J Ultrasound (2024). https://doi.org/10.1007/s40477-023-00865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40477-023-00865-6

Keywords

Navigation