Skip to main content
Log in

Objective assessment of segmentation models for thyroid ultrasound images

  • Original Paper
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Ultrasound features related to thyroid lesions structure, shape, volume, and margins are considered to determine cancer risk. Automatic segmentation of the thyroid lesion would allow the sonographic features to be estimated. On the basis of clinical ultrasonography B-mode scans, a multi-output CNN-based semantic segmentation is used to separate thyroid nodules' cystic & solid components. Semantic segmentation is an automatic technique that labels the ultrasound (US) pixels with an appropriate class or pixel category, i.e., belongs to a lesion or background. In the present study, encoder-decoder-based semantic segmentation models i.e. SegNet using VGG16, UNet, and Hybrid-UNet implemented for segmentation of thyroid US images. For this work, 820 thyroid US images are collected from the DDTI and ultrasoundcases.info (USC) datasets. These segmentation models were trained using a transfer learning approach with original and despeckled thyroid US images. The performance of segmentation models is evaluated by analyzing the overlap region between the true contour lesion marked by the radiologist and the lesion retrieved by the segmentation model. The mean intersection of union (mIoU), mean dice coefficient (mDC) metrics, TPR, TNR, FPR, and FNR metrics are used to measure performance. Based on the exhaustive experiments and performance evaluation parameters it is observed that the proposed Hybrid-UNet segmentation model segments thyroid nodules and cystic components effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gesing A (2015) The thyroid gland and the process of aging; what is new? Thyroid Res 8:A8. https://doi.org/10.1186/1756-6614-8-S1-A8

    Article  PubMed Central  Google Scholar 

  2. Kongburan W, Padungweang P, Krathu W, Chan JH (2016) Semi-automatic construction of thyroid cancer intervention corpus from biomedical abstracts. Eighth Int Conf Adv Comput Intell. https://doi.org/10.1109/ICACI.2016.7449819

    Article  Google Scholar 

  3. Chung R, Kim D (2019) Imaging of thyroid nodules. Appl Radiol 48:16–26

    Article  Google Scholar 

  4. Hoang JK, Sosa JA, Nguyen XV et al (2014) Imaging thyroid disease. updates, imaging approach, and management pearls. Radiol Clin N Am 53:145–161. https://doi.org/10.1016/j.rcl.2014.09.002

    Article  PubMed  Google Scholar 

  5. Botta F, Raimondi S, Rinaldi L et al (2020) Association of a CT-based clinical and radiomics score of non-small cell lung cancer (NSCLC) with lymph node status and overall survival. Cancers (Basel). https://doi.org/10.3390/cancers12061432

    Article  PubMed  Google Scholar 

  6. Jaglan P, Dass R, Duhan M (2019) Breast cancer detection techniques: issues and challenges. J Inst Eng Ser B 100:379–386. https://doi.org/10.1007/s40031-019-00391-2

    Article  Google Scholar 

  7. Chaudhary V, Bano S (2013) Thyroid ultrasound. Indian J Endocrinol Metab 17:219–227. https://doi.org/10.4103/2230-8210.109667

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brillantino C, Rossi E, Baldari D et al (2022) Duodenal hematoma in pediatric age: a rare case report. J Ultrasound 25:349–354. https://doi.org/10.1007/s40477-020-00545-9

    Article  PubMed  Google Scholar 

  9. Yadav N, Dass R, Virmani J (2022) Despeckling filters applied to thyroid ultrasound images: a comparative analysis. Multimed Tools Appl. https://doi.org/10.1007/s11042-022-11965-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Biradar N, Dewal ML, Rohit MK et al (2016) Blind source parameters for performance evaluation of Despeckling filters. Hindawi Publ Corp J Biomed Imaging 2016:1–12. https://doi.org/10.1155/2016/3636017

    Article  Google Scholar 

  11. Vitale V, Rossi E, Di M et al (2020) Pediatric encephalic ultrasonography: the essentials. J Ultrasound 23:127–137. https://doi.org/10.1007/s40477-018-0349-7

    Article  PubMed  Google Scholar 

  12. Kriti VJ, Agarwal R (2019) Assessment of despeckle filtering algorithms for segmentation of breast tumours from ultrasound images. Biocybern Biomed Eng 39:100–121. https://doi.org/10.1016/j.bbe.2018.10.002

    Article  Google Scholar 

  13. Biradar N, Dewal ML, Rohit MK (2015) Speckle Noise Reduction in B-Mode Echocardiographic Images: a comparison. IETE Tech Rev (Institution Electron Telecommun Eng India) 32:435–453. https://doi.org/10.1080/02564602.2015.1031714

    Article  Google Scholar 

  14. Koundal D, Gupta S, Singh S (2016) Speckle reduction method for thyroid ultrasound images in neutrosophic domain. IET Image Process 10:167–175. https://doi.org/10.1049/iet-ipr.2015.0231

    Article  Google Scholar 

  15. Brillantino C, Rossi E, Pirisi P et al (2022) Pseudopapillary solid tumour of the pancreas in paediatric age: description of a case report and review of the literature. J Ultrasound 25:251–257. https://doi.org/10.1007/s40477-021-00587-7

    Article  PubMed  Google Scholar 

  16. Brillantino C, Rossi E, Bifano D et al (2021) An unusual onset of pediatric acute lymphoblastic leukemia. J Ultrasound 24:555–560. https://doi.org/10.1007/s40477-020-00461-y

    Article  PubMed  Google Scholar 

  17. Yadav N, Dass R, Virmani J (2022) Machine learning-based CAD system for thyroid tumour characterisation using ultrasound images. Int J Med Eng Inform 1:1–13. https://doi.org/10.1504/IJMEI.2022.10049164

    Article  Google Scholar 

  18. Dai J, He K, Sun J (2015) Instance-aware Semantic Segmentation via Multi-task Network Cascades. CVPR. https://doi.org/10.1109/CVPR.2016.343

    Article  Google Scholar 

  19. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39:2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  PubMed  Google Scholar 

  20. Iglovikov V (2018) TernausNet: U-Net with VGG11 Encoder pre-trained on imagenet for image segmentation. Comput Vis Pattern Recognition (arXiv180105746v1) pp 1–5

  21. Jaglan P, Dass R, Duhan M (2021) An automatic and efficient technique for tumor location identification and classification through breast MR images. Expert Syst Appl 185:115580. https://doi.org/10.1016/j.eswa.2021.115580

    Article  Google Scholar 

  22. Lundervold AS, Lundervold A (2018) An overview of deep learning in medical imaging focusing on MRI. Zeitschrift fur Medizinische Phys 29:102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  Google Scholar 

  23. Siam M, Gamal M, Abdel-Razek M et al (2018) A comparative study of real-time semantic segmentation for autonomous driving. CVPR Work. https://doi.org/10.1109/CVPRW.2018.00101

    Article  Google Scholar 

  24. Lian S, Luo Z, Zhong Z et al (2018) Attention guided U-Net for accurate iris segmentation. J Vis Commun Image Represent 56:296–304. https://doi.org/10.1016/j.jvcir.2018.10.001

    Article  Google Scholar 

  25. Yin S, Zhang Z, Li H, et al (2019) Fully-automatic segmentation of kidneys in clinical ultrasound images using a boundary distance regression network. In: IEEE 16th Int Symp Biomed Imaging, pp 1741–1744. https://doi.org/10.1109/isbi.2019.8759170

  26. Tabrizi PR, Mansoor A, Cerrolaza JJ, et al (2018) Automatic kidney segmentation in 3D pediatric ultrasound images using deep neural networks and weighted fuzzy active shape model. In: IEEE 15th Int Symp Biomed Imaging (ISBI 2018) 2018-April, pp1170–1173. https://doi.org/10.1109/ISBI.2018.8363779

  27. Yin S, Peng Q, Li H, et al (2018) Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks. Comput Vis Pattern Recognit 1–22

  28. Almajalid R, Shan J, Du Y, Zhang M (2019) Development of a deep-learning-based method for breast ultrasound image segmentation. In: Proceedings of the 17th IEEE Int Conf Mach Learn Appl ICMLA 2018, pp 1103–1108. https://doi.org/10.1109/ICMLA.2018.00179

  29. Yap M, Goyal M, Osman F et al (2018) Breast ultrasound lesions recognition: end-to-end deep learning approaches. J Med Imaging 6:1. https://doi.org/10.1117/1.jmi.6.1.011007

    Article  Google Scholar 

  30. Hu Y, Guo Y, Wang Y et al (2019) Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Med Phys 46:215–228. https://doi.org/10.1002/mp.13268

    Article  PubMed  Google Scholar 

  31. Kumar V, Webb JM, Gregory A et al (2018) Automated and real-time segmentation of suspicious breast masses using convolutional neural network. PLoS ONE. https://doi.org/10.1371/journal.pone.0195816

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hu P, Wu F, Peng J et al (2016) Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol 61:8676–8698. https://doi.org/10.1088/1361-6560/61/24/8676

    Article  PubMed  Google Scholar 

  33. Reddy DS, Bharath R, Rajalakshmi P (2018) A novel computer-aided diagnosis framework using deep learning for classification of fatty liver disease in ultrasound imaging. In: 2018 IEEE 20th Int Conf e-Health Networking, Appl Serv Heal 2018, pp 1–5. https://doi.org/10.1109/HealthCom.2018.8531118

  34. Yadav N, Dass R, Virmani J (2022) Texture analysis of liver ultrasound images. Emergent Converging Technol Biomed Syst Lect Notes Electr Eng 841:575–585. https://doi.org/10.1007/978-981-16-8774-7_48

    Article  Google Scholar 

  35. Song W, Li S, Liu J et al (2015) Multi-task cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J Biomed Heal Inform 14:1–11. https://doi.org/10.1109/JBHI.2018.2852718

    Article  CAS  Google Scholar 

  36. Ravishankar H, Prabhu S, Vaidya V, Singhal N (2016) Hybrid approach for automatic segmentation of fetal abdomen from ultrasound images using deep learning. In: IEEE 13th Int Symp Biomed Imaging, pp 779–782. https://doi.org/10.1109/ISBI.2016.7493382

  37. Ma J, Wu F, Jiang T et al (2017) Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Int J Comput Assist Radiol Surg 12:1895–1910. https://doi.org/10.1007/s11548-017-1649-7

    Article  PubMed  Google Scholar 

  38. Jinlian M, Dexing K (2018) Deep learning models for segmentation of lesion based on ultrasound images. Adv Ultrasound Diagnosis Ther 2:82. https://doi.org/10.37015/audt.2018.180804

    Article  Google Scholar 

  39. Li X, Wang S, Wei X, et al (2018) Fully Convolutional Networks for Ultrasound Image Segmentation of Thyroid Nodules. In: 2018 IEEE 20th Int Conf High Perform Comput Commun IEEE 16th Int Conf Smart City; IEEE 4th Int Conf Data Sci Syst 886–890. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00147

  40. Wang J, Li S, Song W et al (2018) Learning from weakly-labeled clinical data for automatic thyroid nodule classification in ultrasound images. IEEE Int Conf Image Process. https://doi.org/10.1109/ICIP.2018.8451085

    Article  Google Scholar 

  41. Zhou S, Wu H, Gong J, et al (2018) Mark-guided segmentation of ultrasonic thyroid nodules using deep learning. In: Proc 2nd Int Symp Image Comput Digit Med, pp 21–26. https://doi.org/10.1145/3285996.3286001

  42. Ying X, Yu Z, Ry B et al (2018) Thyroid nodule segmentation in ultrasound images based on cascaded convolutional neural network. Int Conf Neural Inf Process 2:373–384. https://doi.org/10.1007/978-3-030-04224-0

    Article  Google Scholar 

  43. Poudel P, Illanes A (2019) Performance evaluation of U-Net convolutional neural network on different percentages of training data for thyroid ultrasound image segmentation. In: 41st Annu Int Conf IEEE Eng Med Biol Soc, pp 2–5

  44. Ding J, Huang Z, Shi M, Ning C (2019) Automatic thyroid ultrasound image segmentation based on U-shaped network. In: 12th Int Congr Image Signal Process Biomed Eng Informatics, CISP-BMEI 1–5. https://doi.org/10.1109/CISP-BMEI48845.2019.8966062

  45. Kumar V, Webb J, Gregory A et al (2020) Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning. IEEE Access 8:63482–63496. https://doi.org/10.1109/ACCESS.2020.2982390

    Article  PubMed  PubMed Central  Google Scholar 

  46. Webb JM, Meixner DD, Adusei SA et al (2021) Automatic deep learning semantic segmentation of ultrasound thyroid Cineclips using recurrent fully convolutional networks. IEEE Access 9:5119–5127. https://doi.org/10.1109/ACCESS.2020.3045906

    Article  PubMed  Google Scholar 

  47. Poudel P, Illanes A, Sheet D, Friebe M (2018) Evaluation of commonly used algorithms for thyroid ultrasound images segmentation and improvement using machine learning approaches. Hindawi J Healthc Eng 2018:1–13. https://doi.org/10.1155/2018/8087624

    Article  Google Scholar 

  48. Sun J, Sun T, Yuan Y, et al (2018) Automatic diagnosis of thyroid ultrasound image based on FCN-AlexNet and transfer learning. In: IEEE 23rd Int Conf Digit Signal Process, pp 1–5. https://doi.org/10.1109/ICDSP.2018.8631796

  49. Wildman-Tobriner BCK (2019) Deep learning-based segmentation of nodules in thyroid ultrasound: improving performance by utilizing markers present in the images. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2019.10.003

    Article  PubMed  Google Scholar 

  50. Guo Z, Zhou J, Zhao D (2020) Thyroid nodule ultrasonic imaging segmentation based on a deep learning model and data augmentation. In: IEEE 4th Inf Technol Autom Control Conf (ITNEC 2020), pp 549–554. https://doi.org/10.1109/ITNEC48623.2020.9085093

  51. Gomes Ataide EJ, Agrawal S, Jauhari A et al (2021) Comparison of deep learning algorithms for semantic segmentation of ultrasound thyroid nodules. Curr Dir Biomed Eng 7:879–882. https://doi.org/10.1515/cdbme-2021-2224

    Article  Google Scholar 

  52. Ke W, Wang Y, Wan P, Liu W (2017) An ultrasonic image recognition method for papillary thyroid carcinoma based on depth convolution neural network. Neural Inf ICONIP 2017 Process Lect Notes Comput Sci 10635:82–91. https://doi.org/10.1007/978-3-319-70096-0_9

    Article  Google Scholar 

  53. Wang Y, Ke W, Wan P (2018) A method of ultrasonic image recognition for thyroid papillary carcinoma based on deep convolution neural network. NeuroQuantology 16:757–768. https://doi.org/10.14704/nq.2018.16.5.1306

    Article  Google Scholar 

  54. Li H, Weng J, Shi Y et al (2018) An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-25005-7

    Article  CAS  Google Scholar 

  55. Liu T, Guo Q, Lian C et al (2019) Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med Image Anal 58:101555. https://doi.org/10.1016/j.media.2019.101555

    Article  PubMed  Google Scholar 

  56. Wang L, Yang S, Yang S et al (2019) Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network. World J Surg Oncol 17:1–9. https://doi.org/10.1186/s12957-019-1558-z

    Article  Google Scholar 

  57. Xie S, Yu J, Liu T, et al (2019) Thyroid nodule detection in ultrasound images with convolutional neural networks. In: Proc 14th IEEE Conf Ind Electron Appl ICIEA 2019, pp 1442–1446. https://doi.org/10.1109/ICIEA.2019.8834375

  58. Yu X, Wang H, Ma L (2020) Detection of thyroid nodules with ultrasound images based on deep learning. Curr Med Imaging 16:174–180. https://doi.org/10.2174/1573405615666191023104751

    Article  Google Scholar 

  59. Abdolali F, Kapur J, Jaremko JL et al (2020) Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2020.103871

    Article  PubMed  Google Scholar 

  60. Wang L, Zhang L, Zhu M et al (2020) Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks. Med Image Anal 61:101665. https://doi.org/10.1016/j.media.2020.101665

    Article  PubMed  Google Scholar 

  61. Yao S, Yan J, Wu M et al (2020) Texture synthesis based thyroid nodule detection from medical ultrasound images: interpreting and suppressing the adversarial effect of in-place manual annotation. Front Bioeng Biotechnol 8:1–11. https://doi.org/10.3389/fbioe.2020.00599

    Article  Google Scholar 

  62. Dass R (2018) Speckle noise reduction of ultrasound images using BFO cascaded with wiener filter and discrete wavelet transform in homomorphic region. Procedia Comput Sci 132:1543–1551. https://doi.org/10.1016/j.procs.2018.05.118

    Article  Google Scholar 

  63. Dass R, Vikash R (2013) Comparative analysis of threshold based, K-means and level set segmentation algorithms. IJCST 4:93–95

    Google Scholar 

  64. Pedraza L, Vargas C, Narváez F, et al (2015) An open access thyroid ultrasound image database. 10th Int Symp Med Inf Process Anal 9287:92870W1–6. https://doi.org/10.1117/12.2073532

  65. (2018) https://www.ultrasoundcases.info/cases/head-and-neck/thyroid-gland/. access In: September, 2018

  66. Rezatofighi H, Tsoi N, Gwak J et al (2019) Generalized intersection over union: a metric and a loss for bounding box regression. CVPR 2019:1–9

    Google Scholar 

  67. Rahman MA, Wang Y (2016) Optimizing intersection-over-union in deep neural networks for image segmentation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 10072 LNCS, pp 234–244. https://doi.org/10.1007/978-3-319-50835-1_22

  68. Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. https://doi.org/10.1186/s12880-015-0068-x

    Article  PubMed  PubMed Central  Google Scholar 

  69. Qi X, Zhang L, Chen Y et al (2019) Automated diagnosis of breast ultrasonography images using deep neural networks. Med Image Anal 52:185–198. https://doi.org/10.1016/j.media.2018.12.006

    Article  PubMed  Google Scholar 

  70. Dass R, Yadav N (2020) Image quality assessment parameters for despeckling filters. Procedia Comput Sci 167:2382–2392. https://doi.org/10.1016/j.procs.2020.03.291

    Article  Google Scholar 

  71. Zaitoun Nida M, Aqel MJ (2015) Survey on Image Segmentation Techniques. Procedia Comput Sci 65:797–806. https://doi.org/10.1016/j.procs.2015.09.027

    Article  Google Scholar 

  72. Litjens G, Bejnordi BE, Arindra A et al (2017) A survey on deep learning in medical image analysis. Med Image Anal. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  73. Koundal D, Gupta S, Singh S (2018) Computer aided thyroid nodule detection system using medical ultrasound images. Biomed Signal Process Control 40:117–130. https://doi.org/10.1016/j.bspc.2017.08.025

    Article  Google Scholar 

  74. Snekhalatha U, Gomathy V (2018) Ultrasound thyroid image segmentation, feature extraction, and classification of disease using feed forward back propagation network. Prog Adv Comput Intell Eng 563:89–98. https://doi.org/10.1007/978-981-10-6872-0_9

    Article  Google Scholar 

  75. Ying X, Yu Z, B RY, et al (2018) Thyroid Nodule Segmentation in Ultrasound Images Based on Cascaded Convolutional Neural Network. In: Neural Inf Process ICONIP 2018 Lect Notes Comput Sci 11306:373–384. https://doi.org/10.1007/978-3-030-04224-0_32

  76. Gireesha HSN (2014) Thyroid nodule segmentation and classification in ultrasound images. Int J Eng Res Technol 3:2252–2256

    Google Scholar 

  77. Dass R, Priyanka DS (2012) Image segmentation techniques. IJECT 3:66–70

    Google Scholar 

  78. Chang C, Huang H, Chen S (2010) Automatic thyroid nodule segmentation and component analysis in ultrasound images. Biomed Eng Appl Basis Commun 22:81–89. https://doi.org/10.4015/S1016237210001803

    Article  Google Scholar 

  79. Gireesha HM, Nanda S (2014) Thyroid nodule segmentation and classification in ultrasound images. Int J Eng Res Technol 3:2252–2256

    Google Scholar 

  80. Singh N, Jindal A (2012) A segmentation method and comparison of classification methods for thyroid ultrasound images. Int J Comput Appl 50:43–49. https://doi.org/10.5120/7818-1115

    Article  Google Scholar 

  81. Abbasian Ardakani A, Bitarafan-Rajabi A, Mohammadzadeh A et al (2019) A hybrid multilayer filtering approach for thyroid nodule segmentation on ultrasound Images. J Ultrasound Med 38:629–640. https://doi.org/10.1002/jum.14731

    Article  PubMed  Google Scholar 

  82. Nugroho HA, Nugroho A, Choridah L (2015) Thyroid nodule segmentation using active contour bilateral filtering on ultrasound images. Int Conf Qual Res 2015:43–46. https://doi.org/10.1109/QiR.2015.7374892

    Article  Google Scholar 

  83. Selvathi D, Sharnitha VVSS (2011) Thyroid classification and segmentation in ultrasound images using machine learning algorithms. Int Conf Signal Process Commun Comput Netw Technol 2011:836–841. https://doi.org/10.1109/ICSCCN.2011.6024666

    Article  Google Scholar 

  84. Huang K, Cheng HD, Zhang Y, et al (2018) Medical Knowledge Constrained Semantic Breast Ultrasound Image Segmentation. In: 2018 24th Int Conf Pattern Recognit, pp 1193–1198

  85. Wang J, Li S, Song W, et al (2018) Learning from weakly-labeled clinical data for automatic thyroid nodule classification in ultrasound images. In: 2018 25th IEEE Int Conf Image Process, pp 3114–3118. https://doi.org/10.1109/ICIP.2018.8451085

  86. Ravishankar H, Sudhakar P, Venkataramani R, et al (2016) Understanding the mechanisms of deep transfer learning for medical images. In: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 10008 LNCS, pp 188–196. https://doi.org/10.1007/978-3-319-46976-8_20

  87. Yao W, Zeng Z, Lian C, Tang H (2018) Pixel-wise Regression using U-net and its application on pansharpening. Neurocomputing. https://doi.org/10.1016/j.neucom.2018.05.103

    Article  Google Scholar 

  88. Rezaee M, Zhang Y, Mishra R, et al (2018) Using a VGG-16 Network for Individual Tree Species Detection with an Object-Based Approach. In: 2018 10th IAPR Work Pattern Recognit Remote Sens, pp 1–7. https://doi.org/10.1109/PRRS.2018.8486395

  89. Liu X, Deng Z, Yang Y (2018) Recent progress in semantic image segmentation. Artif Intell Rev. https://doi.org/10.1007/s10462-018-9641-3

    Article  Google Scholar 

  90. Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015(arXiv:150504597) 1–8

  91. Brito JP, Gionfriddo MR, Al NA et al (2014) The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab 99:1253–1263. https://doi.org/10.1210/jc.2013-2928

    Article  CAS  PubMed  Google Scholar 

  92. Choi H (2017) Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions. Nucl Med Mol Imaging 2016. DOI: 10.1007/s13139-017-0504-7

  93. Girshick R, Donahue J, Darrell T et al (2012) Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conf Comput Vis Pattern Recognit 2014:2–9. https://doi.org/10.1109/CVPR.2014.81

    Article  Google Scholar 

  94. De Brébisson A, Montana G (2015) Deep neural networks for anatomical brain segmentation. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2015-Octob:20–28. https://doi.org/10.1109/CVPRW.2015.7301312

  95. Xu Y, Wang Y, Yuan J et al (2019) Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91:1–9. https://doi.org/10.1016/j.ultras.2018.07.006

    Article  PubMed  Google Scholar 

  96. China D, Illanes A, Poudel P et al (2019) Anatomical structure segmentation in ultrasound volumes using cross frame belief propagating iterative random walks. IEEE J Biomed Heal Inform 23:1110–1118. https://doi.org/10.1109/JBHI.2018.2864896

    Article  Google Scholar 

  97. Lestari DP, Madenda S, Ernastuti WEP (2017) Comparison of three segmentation methods for breast ultrasound images based on level set and morphological operations. Int J Electr Comput Eng 7:383–391. https://doi.org/10.11591/ijece.v7i1.pp383-391

    Article  Google Scholar 

  98. Prabha DS, Kumar JS (2016) Performance evaluation of image segmentation using objective methods. Indian J Sci Technol 9:1–8. https://doi.org/10.17485/ijst/2016/v9i8/87907

    Article  Google Scholar 

  99. Yap MH, Pons G, Martí J et al (2018) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Heal Informatics 22:1218–1226. https://doi.org/10.1109/JBHI.2017.2731873

    Article  Google Scholar 

  100. Lu F, Wu F, Hu P et al (2017) Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg 12:171–182. https://doi.org/10.1007/s11548-016-1467-3

    Article  PubMed  Google Scholar 

  101. Da Nóbrega RVM, Peixoto SA, Da Silva SPP, Filho PPR (2018) Lung nodule classification via deep transfer learning in CT lung images. Proc IEEE Symp Comput Med Syst 2018:244–249. https://doi.org/10.1109/CBMS.2018.00050

    Article  Google Scholar 

  102. Hermessi H, Mourali O, Zagrouba E (2019) Deep feature learning for soft tissue sarcoma classification in MR images via transfer learning. Expert Syst Appl 120:116–127. https://doi.org/10.1016/j.eswa.2018.11.025

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Dr. Jyotsna Sen, Sr. Professor, department of radiodiagnosis, Pt. B. D. Sharma Postgraduate Institute of Medical Sciences, Rohtak for stimulating discussions regarding different sonographic characteristics exhibited by various types of benign and malignant thyroid tumors. The first author acknowledge “National Project Implementation Unit (NPIU), a unit of Ministry of Human Resource Development, Government of India” for the financial assistantship through TEQIP-III project as Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India.

Funding

This study and authors not received any funding from other sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Dass, R. & Virmani, J. Objective assessment of segmentation models for thyroid ultrasound images. J Ultrasound 26, 673–685 (2023). https://doi.org/10.1007/s40477-022-00726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-022-00726-8

Keywords

Navigation