Skip to main content
Log in

Drainage-related ultrasonography (DRUS): a novel technique for discriminating obstructive and nonobstructive hydroureters in children

  • Original Article
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Background

Despite advances in urologic imaging, the paucity of an optimal technique that accurately clarifies obstructive and nonobstructive hydroureter exists.

Objective

This study was conducted to introduce a novel and modified ultrasonographic technique, known as drainage-related ultrasonography (DRUS), discriminating obstructive and nonobstructive, nonrefluxing hydroureter.

Materials and methods

A total of 358 children (mean age, 3.7 years) with 418 nonrefluxing hydroureter were included. These children were composed of two groups of obstructive nonrefluxing (141 children with 157 dilated ureters) and nonobstructive, nonrefluxing (217 children with 261 hydroureter). The definite diagnosis regarding the subtype of hydroureter was derived from appropriate investigation. The maximum diameter of the dilated ureter, which was observed on ultrasonography, was recorded before and after 3 h of catheterization, as D1 and D2, respectively. To assess the D ratio, a formula was developed, that is, [(|D1 − D2|)/D1] × 100. Values were recorded and cutoff points were set to discriminate between subtypes.

Results

Obstructive versus nonobstructive subtypes of nonrefluxing hydroureter were clarified with 78.5 % sensitivity and 83.4 % specificity, by setting a cutoff point of 22 % for the D ratio. Regardless of the cutoff point assigned to the reduction in D (D2 compared with D1), DRUS revealed 93.9 % sensitivity, 80.6 % specificity, 63.2 % positive predictive value, and 97.4 % negative predictive value in discriminating upper from lower obstruction.

Conclusion

DRUS affords favorable results in terms of differentiating between obstructive and nonobstructive, nonrefluxing hydroureter, as well as between upper and lower obstruction in obstructive cases. It has the potential to become an efficient imaging modality in the diagnostic algorithm of hydroureter.

Sommario

Background

Nonostante i progressi nella diagnostica per immagini urologica, vi è la mancanza di una tecnica ottimale che definisca con precisione l’idrouretere ostruttivo e non-ostruttivo.

Obiettivi

Questo studio è stato condotto per introdurre una nuova e modificata tecnica ecografica (US), conosciuta come drenaggio correlato all’ecografia (DRUS), per discriminare l’idrourete ostruttivo da quello non-ostruttivo.

Materiali e metodi

Un totale di 358 bambini (età media: 3,7 anni) con 418 idroureteri senza reflussi sono stati inclusi nello studio. Questi bambini sono stati divisi in due gruppi, con forme ostruttive, senza reflusso (141 bambini con 157 ureteri dilatati) e con forme non-ostruttive, senza reflusso (217 bambini con 261 idroureteri). La diagnosi definitiva riguardo il sottotipo di idrouretere è stata fatta con indagini appropriate. Il diametro massimo dell’uretere dilatato misurato con ecografia, è stato registrato prima e tre ore dopo la cateterizzazione, rispettivamente come D1 e D2. Per valutare il rapporto D, è stata sviluppata una formula [(|D1 − D2|)/D1] × 100. I valori sono stati registrati e sono stati fissati punti di cut-off per discriminare tra i sottotipi.

Risultati

Le forme ostruttive vs non-ostruttive di idrouretere, senza reflussi, presentavano il 78,5 % di sensibilità e il 83,4 % di specificità, con punto di cut-off del 22 % per il rapporto D. Indipendentemente dal punto di cut-off assegnata al rapporto D (D2 rispetto a D1), il DRUS ha rivelato 93,9 % di sensibilità, 80.6 % di specificità, 63.2 % e 97.4 % PPV NPV nel differenziare ostruzioni alte da quelle basse.

Conclusioni

Il DRUS comporta risultati favorevoli nella diagnosi differenziale tra forme ostruttive e non-ostruttive senza reflusso. Ha le potenzialità per diventare una modalità di imaging efficace negli algoritmi diagnostici dell’idrouretere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anheuser P, Kranz J, Steffens J et al (2013) Primary megaureter]. Der Urologe Ausg A 52(1):33

    Article  CAS  PubMed  Google Scholar 

  2. Anderson CB, Tanaka ST, Pope JCt et al (2012) Acute pain crisis as a presentation of primary megaureter in children. J Pediatr Urol 8(3):254–257. doi:10.1016/j.jpurol.2011.05.012

  3. Bueschen AJ, Lockhart ME (2011) Evolution of urological imaging. Int J Urol 18(2):102–112. doi:10.1111/j.1442-2042.2010.02677.x

    Article  PubMed  Google Scholar 

  4. Campbell MF, Wein AJ, Kavoussi LR. Campbell-Walsh Urology. WB Saunders; 2007

  5. Riccabona M (2010) Obstructive diseases of the urinary tract in children: lessons from the last 15 years. Pediatr Radiol 40(6):947–955. doi:10.1007/s00247-010-1590-1

    Article  PubMed  Google Scholar 

  6. Rowe CK, Franco FB, Barbosa JA et al (2012) A novel method of evaluating ureteropelvic junction obstruction: dynamic near infrared fluorescence imaging compared to standard modalities to assess urinary obstruction in a swine model. J Urol 188(5):1978–1985. doi:10.1016/j.juro.2012.07.002

    Article  PubMed  Google Scholar 

  7. Lebowitz RL, Olbing H, Parkkulainen KV et al (1985) International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol 15(2):105–109

    Article  CAS  PubMed  Google Scholar 

  8. Tourchi A, Kajbafzadeh AM, Aryan Z et al (2014) The management of vesicoureteral reflux in the setting of posterior urethral valve with emphasis on bladder function and renal outcome: a single center cohort study. Urology 83(1):199–205. doi:10.1016/j.urology.2013.07.033

    Article  PubMed  Google Scholar 

  9. Garcia-Aparicio L, Rodo J, Krauel L et al (2012) High pressure balloon dilation of the ureterovesical junction—first line approach to treat primary obstructive megaureter? J Urol 187(5):1834–1838. doi:10.1016/j.juro.2011.12.098

    Article  CAS  PubMed  Google Scholar 

  10. Muthusami P, Bhuvaneswari V, Elangovan S et al (2013) The role of static magnetic resonance urography in the evaluation of obstructive uropathy. Urology 81(3):623–627

    Article  PubMed  Google Scholar 

  11. Penna FJ, Chow JS, Minnillo BJ et al (2011) Identifying ureteropelvic junction obstruction by fluorescence imaging: a comparative study of imaging modalities to assess renal function and degree of obstruction in a mouse model. J Urol 185(6):2405–2413

    Article  PubMed  Google Scholar 

  12. Chen SY, Su YT, Wu CY (2010) Nonobstructive dilation of urinary tract and later development of obstruction: report of one case. Pediatr Neonatol 51(6):353–355. doi:10.1016/S1875-9572(10)60068-X

    Article  PubMed  Google Scholar 

  13. Homsy YL, Mehta PH, Huot D et al (1988) Intermittent hydronephrosis: a diagnostic challenge. J Urol 140(5 Pt 2):1222–1226

    CAS  PubMed  Google Scholar 

  14. Vittori M, D’Addessi A, Pinto F et al (2011) (99 m)Tc-MAG3 diuretic renography in assessment of obstructive uropathy. The new test F+10SP: a step ahead in the differential diagnosis. Urologia 78(3):221–226. doi:10.5301/RU.2011.8633

    Article  PubMed  Google Scholar 

  15. Silverman SG, Leyendecker JR, Amis ES Jr (2009) What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology 250(2):309–323. doi:10.1148/radiol.2502080534

    Article  PubMed  Google Scholar 

  16. Lin SP, Brown JJ (2007) MR contrast agents: physical and pharmacologic basics. J Magn Reson Imaging 25(5):884–899. doi:10.1002/jmri.20955

    Article  PubMed  Google Scholar 

  17. de Bessa J Jr., Denes FT, Chammas MC et al (2008) Diagnostic accuracy of color Doppler sonographic study of the ureteric jets in evaluation of hydronephrosis. J Pediatr Urol 4(2):113–117. doi:10.1016/j.jpurol.2007.10.013

  18. Arena S, Magno C, Montalto AS et al (2012) Long-term follow-up of neonatally diagnosed primary megaureter: rate and predictors of spontaneous resolution. Scand J Urol Nephrol 46(3):201–207. doi:10.3109/00365599.2012.662695

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Abdol-Mohammad Kajbafzadeh, Mehrzad Mehdizadeh, Zahra Aryan, Maryam Ebadi, Shadi Abdar Esfahani, Laleh Montaser-Kouhsari, Azadeh Elmi, Saman Shafaat Talab, Zhina Sadeghi declare no conflict of interest.

Human and Animal Studies

The study was conducted in accordance with all institutional and national guidelines for the care and use of laboratory animals.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. All patients provided written informed consent to enrolment in the study and to the inclusion in this article of information that could potentially lead to their identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdol-Mohammad Kajbafzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajbafzadeh, AM., Mehdizadeh, M., Aryan, Z. et al. Drainage-related ultrasonography (DRUS): a novel technique for discriminating obstructive and nonobstructive hydroureters in children. J Ultrasound 18, 117–125 (2015). https://doi.org/10.1007/s40477-014-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-014-0128-z

Keywords

Navigation