Skip to main content
Log in

Tuberculous Meningitis: an Update on the Pathogenesis and Neuroimmunology

  • REVIEW
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Tuberculosis meningitis (TBM) carries the highest morbidity and mortality of any type of tuberculosis infection, yet the definitive mechanism(s) that result in TBM are largely unknown.

Recent Findings

Microglia as a bridge between the immune and nervous systems and its role in age related physiological changes that may lend some insight into why TBM is prevalent in pediatrics.

Summary

There are various hypotheses on how Mycobacterium tuberculosis, the etiological agent of tuberculosis, disseminates from the lungs to the central nervous system but these routes have been unobserved in existing animal models. This review aims to highlight the neuroimmunology of TBM, highlights the importance of age-dependent physiological changes, and recommends techniques commonly used in neurobiology to generate a more complete picture of TBM pathogenesis. We argue that age is an important consideration because TBM typically presents in children less than 5 years old. We hope that increasing the prevalence of longitudinal studies in TBM research with respect to age will aid in identifying definitive mechanism(s) that result in TBM and improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. CDCTB. World TB Day History. Centers for Disease Control and Prevention. 2023. https://www.cdc.gov/tb/worldtbday/history.htm.

  2. Tuberculosis (TB). https://www.who.int/news-room/fact-sheets/detail/tuberculosis.

  3. Baykan AH, et al. Extrapulmonary tuberculosıs: an old but resurgent problem. Insights Imaging. 2022;13:39.

    Article  PubMed  PubMed Central  Google Scholar 

  4. BCG. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccines-quality/bcg.

  5. Kurihara M, et al. The challenge of differentiating tuberculous meningitis from bacterial meningitis. Respirol Case Rep. 2022;10(3):e0910. https://doi.org/10.1002/rcr2.910.

  6. Mezochow A, Thakur K, Vinnard C. Tuberculous meningitis in children and adults: New insights for an ancient foe. Curr Neurol Neurosci Rep. 2017;17(11):85. https://doi.org/10.1007/s11910-017-0796-0. This review gives a useful overview of TBM including diagnostics and treatment up to ~2016.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sharma S, et al. Cytokines do play a role in pathogenesis of tuberculous meningitis: a prospective study from a tertiary care center in India. J Neurol Sci. 2017;379:131–6.

    Article  CAS  PubMed  Google Scholar 

  8. Soria J, Metcalf T, Mori N, Newby RE, Montano SM, Huaroto L, Ticona E, Zunt JR. Mortality in hospitalized patients with tuberculous meningitis. BMC Infect Dis. 2019;19(1):9. https://doi.org/10.1186/s12879-018-3633-4. Retrospective Peruvian TBM patient data is used in this publication. These data emphasize the importance of early HIV diagnosis in patients with suspected TBM.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Soria J, Chiappe A, Gallardo J, Zunt JR, Lescano AG. Tuberculous meningitis: impact of timing of treatment initiation on mortality. Open Forum Infect Dis. 2021;8:345.

    Article  Google Scholar 

  10. Chin JH. Tuberculous meningitis: Diagnostic and therapeutic challenges. Neurol Clin Pract. 2014;4(3):199–205. https://doi.org/10.1212/CPJ.0000000000000023. This brief review has good descriptions about TBM diagnostic challenges.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ssebambulidde K, Gakuru J, Ellis J, Cresswell FV, Bahr NC. Improving technology to diagnose tuberculous meningitis: Are we there yet? Front Neurol. 2022;30(13):892224. https://doi.org/10.3389/fneur.2022.892224. TBM diagnostic methods are captured elegantly in this very useful review. Detailed overviews of novel diagnostic technologies for TBM are also presented.

    Article  Google Scholar 

  12. Cresswell FV, et al. Tuberculous meningitis international research consortium. Recent developments in tuberculous meningitis pathogenesis and diagnostics. Wellcome Open Res. 2021;4:164. https://doi.org/10.12688/wellcomeopenres.15506.3. This is an excellent up-to-date review focused on TBM pathogenesis. Novel diagnostic technologies are also discussed.

  13. Arshad A, et al. Analysis of Tuberculosis Meningitis Pathogenesis, Diagnosis, and Treatment. J Clin Med. 2020;9(9):2962. https://doi.org/10.3390/jcm9092962. This review describes immune responses, pathogenesis, diagnosis and treatment of TBM. Table 1 in this review is a useful article list with descriptive summaries.

  14. Manyelo CM, Solomons RS, Walzl G, Chegou NN. Tuberculous meningitis: pathogenesis, immune responses, diagnostic challenges, and the potential of biomarker-based approaches. J Clin Microbiol. 2021;59:e01771-e1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ben-Shaanan TL, et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat Commun. 2018;9:2723.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Caldwell LJ, Subramaniam S, MacKenzie G, Shah DK. Maximising the potential of neuroimmunology. Brain Behav Immun. 2020;87:189–92.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Morimoto K, Nakajima K. Role of the immune system in the development of the central nervous system. Front Neurosci. 2019;13:916.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee SH. Tuberculosis Infection and Latent Tuberculosis. Tuberc Respir Dis (Seoul). 2016;79(4):201–6. https://doi.org/10.4046/trd.2016.79.4.201. This review discusses factors that influence the transition from latent TB to active TB and emphasizes the importance of generating more latent TB treatments in groups defined in the paper to reduce overall TB burden.

    Article  PubMed  Google Scholar 

  20. Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr. 2016;4(5). https://doi.org/10.1128/microbiolspec.TBTB2-0018-2016.

  21. Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host antimicrobial peptides: the promise of new treatment strategies against tuberculosis. Front Immunol. 2017;8:1499.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Queval CJ, et al. Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell Rep. 2017;20:3188–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12:352–66.

    Article  CAS  PubMed  Google Scholar 

  24. Pagán AJ, Ramakrishnan L. The Formation and Function of Granulomas. Annu Rev Immunol. 2018;26(36):639–65. https://doi.org/10.1146/annurev-immunol-032712-100022. This review does a great job defining granuloma formation and function.

    Article  CAS  Google Scholar 

  25. Sugawara I, Yamada H, Mizuno S. Relative importance of STAT4 in murine tuberculosis. J Med Microbiol. 2003;52:29–34.

    Article  CAS  PubMed  Google Scholar 

  26. Flynn JL, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995;2(6):561–72. https://doi.org/10.1016/1074-7613(95)90001-2.

  27. Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol Baltim Md. 1998;1950(161):2636–41.

    Google Scholar 

  28. Jain SK, Tobin DM, Tucker EW, Venketaraman V, Ordonez AA, Jayashankar L, Siddiqi OK, Hammoud DA, Prasadarao NV, Sandor M, Hafner R, Fabry Z. NIH Tuberculous Meningitis Writing Group. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol. 2018;19(6):521–5. https://doi.org/10.1038/s41590-018-0119-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ar R. The pathogenesis of tuberculous meningitis. Bull John Hopkins Hosp. 1933;52:5.

    Google Scholar 

  30. Leonard JM. Central nervous system tuberculosis. Microbiol Spectr. 2017;5(2). https://doi.org/10.1128/microbiolspec. A good review with detailed descriptions of the tuberculoma.

  31. Zaharie S-D, et al. The immunological architecture of granulomatous inflammation in central nervous system tuberculosis. Tuberculosis. 2020;125:102016.

    Article  CAS  PubMed  Google Scholar 

  32. Tripathi S, et al. Glial alterations in tuberculous and cryptococcal meningitis and their relation to HIV co-infection – a study on human brains. J Infect Dev Ctries. 2014;8:1421–43.

    Article  PubMed  Google Scholar 

  33. Perez-Malagon CD, Barrera-Rodriguez R, Lopez-Gonzalez MA, Alva-Lopez LF. Diagnostic and neurological overview of brain tuberculomas: a review of literature. Cureus. 2021. https://doi.org/10.7759/cureus.20133.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Anuradha HK, et al. Intracranial tuberculomas in patients with tuberculous meningitis: predictors and prognostic significance. Int J Tuberc Lung Dis. 2011;15(2):234–9.

  35. Spanos JP, Hsu NJ, Jacobs M. Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Front Cell Neurosci. 2015;9:182. https://doi.org/10.3389/fncel.2015.00182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan W, et al. Distinct phases of adult microglia proliferation: a Myc-mediated early phase and a Tnfaip3-mediated late phase. Cell Discov. 2022;8:1–18.

    Article  Google Scholar 

  37. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42.

    Article  CAS  PubMed  Google Scholar 

  38. Verhoeven D. Immunometabolism and innate immunity in the context of immunological maturation and respiratory pathogens in young children. J Leukoc Biol. 2019;106:301–8.

    Article  CAS  PubMed  Google Scholar 

  39. Mylonas A, O’Loghlen A. cellular senescence and ageing: mechanisms and interventions. Front Aging. 2022;3:866718.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123:958–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee J, Kim H-J. Normal aging induces changes in the brain and neurodegeneration progress: review of the structural, biochemical, metabolic, cellular, and molecular changes. Front Aging Neurosci. 2022;14:931536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Malaeb S, Cohen S, Virgintino D, Stonestreet B. Core Concepts: Development of the Blood-Brain Barrier. NeoReviews. 2012;13:e241–50. https://doi.org/10.1542/neo.13-4-e241.

    Article  Google Scholar 

  43. Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry. 2022;27(6):2659–73. https://doi.org/10.1038/s41380-022-01511-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ducomble T, et al. The burden of extrapulmonary and meningitis tuberculosis: an investigation of national surveillance data, Germany, 2002 to 2009. Euro Surveill. 2013;18(12):20436.

  45. Ngwa C, et al. Age and sex differences in primary microglia culture: a comparative study. J Neurosci Methods. 2021;364:109359.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nikodemova M, Small AL, Kimyon RS, Watters JJ. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol Genomics. 2016;48:336–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Letiembre M, et al. Innate immune receptor expression in normal brain aging. Neuroscience. 2007;146:248–54.

    Article  CAS  PubMed  Google Scholar 

  48. Xie Z, et al. By Regulating the NLRP3 inflammasome can reduce the release of inflammatory factors in the co-culture model of tuberculosis H37Ra strain and rat microglia. Front Cell Infect Microbiol. 2021;11:637769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang CS, et al. Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. J Neuroinflammation. 2007;4:27. https://doi.org/10.1186/1742-2094-4-27. This study reveals intracellular signaling involved in the pro-inflammatory response by Mtb-challenged microglia in vitro.

  50. Curto M, et al. Inhibition of cytokines expression in human microglia infected by virulent and non-virulent mycobacteria. Neurochem Int. 2004;44:381–92.

    Article  CAS  PubMed  Google Scholar 

  51. Rock RB, et al. Mycobacterium tuberculosis-induced cytokine and chemokine expression by human microglia and astrocytes: effects of dexamethasone. J Infect Dis. 2005;192(12):2054–8. https://doi.org/10.1086/498165.

  52. Cannas S, et al. Interaction between Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium subspecies paratuberculosis with the enteric glia and microglial cells. Gut Pathog. 2011;3:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. potassium channel expression in microglia. Nguyen, H. M. et al. Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia. Glia. 2017;65:106–21.

    Article  Google Scholar 

  54. Di Lucente J, Nguyen HM, Wulff H, Jin L-W, Maezawa I. The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. Glia. 2018;66:1881–95.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nicolaou SA, et al. Localization of Kv1.3 Channels in the immunological synapse modulates the calcium response to antigen stimulation in T lymphocytes. J Immunol. 2009;183:6296–302.

    Article  CAS  PubMed  Google Scholar 

  56. Vallejo-Gracia A, et al. KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology. Sci Rep. 2021;11:14632.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laprell L, Schulze C, Brehme M-L, Oertner TG. The role of microglia membrane potential in chemotaxis. J Neuroinflammation. 2021;18:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khanna R, Roy L, Zhu X, Schlichter LC. K+ channels and the microglial respiratory burst. Am J Physiol-Cell Physiol. 2001;280:C796–806.

    Article  CAS  PubMed  Google Scholar 

  59. Ramesha S, et al. Unique molecular characteristics and microglial origin of Kv1.3 channel–positive brain myeloid cells in Alzheimer’s disease. Proc Natl Acad Sci. 2021;118:e2013545118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ. The pathogenesis of tuberculous meningitis. J Leukoc Biol. 2019;105(2):267–80. https://doi.org/10.1002/JLB.MR0318-102R. This is a very important publication detailing TBM pathogenesis, immune response, and clinical manifestations of TBM in relation to the immune response.

    Article  CAS  PubMed  Google Scholar 

  61. Randall PJ, et al. Neurons are host cells for Mycobacterium tuberculosis. Infect Immun. 2014;82:1880–90.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rodriguez-Mogeda C, et al. Breaching brain barriers: B cell migration in multiple sclerosis. Biomolecules. 2022;12:800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Turtzo LC, et al. Meningeal blood–brain barrier disruption in acute traumatic brain injury. Brain Commun. 2020;2:fcaa143.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rosenberg GA. Neurological diseases in relation to the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32:1139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. The Blood-Brain Barrier. Methods and Protocols, vol. 2492. US: Springer; 2022.

    Google Scholar 

  66. Ciribelli BN, Colmati F, de Souza EC. Nernst equation applied to electrochemical systems and centenary of his Nobel Prize in chemistry. Int J Innov Educ Res. 2020;8:670–83.

    Article  Google Scholar 

  67. Erlichman JS, Leiter JC. Glia modulation of the extracellular milieu as a factor in central CO 2 chemosensitivity and respiratory control. J Appl Physiol. 2010;108:1803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Leeuwen LM, et al. Mycobacteria employ two different mechanisms to cross the blood-brain barrier. Cell Microbiol. 2018;20:e12858.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gomez J, Pickup S. Cribriform Plate Fractures. [Updated 2023 Jun 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562192/

  70. Emecen AN, Ertekin R, Baysal B, Arslan F, Vahaboglu H. Clival defect in the pathogenesis of recurrent meningitis: a case report and literature review. Egypt J Neurosurg. 2019;34:36.

    Article  Google Scholar 

  71. Pervin N, Sundareshan V, Naegleria. in StatPearls (StatPearls Publishing, 2023).

  72. Alvarez JI, Teale JM. Multiple expression of matrix metalloproteinases in murine neurocysticercosis: Implications for leukocyte migration through multiple central nervous system barriers. Brain Res. 2008;1214:145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17:69.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wong AD, et al. The blood-brain barrier: An engineering perspective. Front Neuroeng. 2013;6:7. https://doi.org/10.3389/fneng.2013.00007.

  75. Kováč L. The 20 W sleep-walkers. EMBO Rep. 2010;11:2–2.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Crone C, Christensen O. Electrical resistance of a capillary endothelium. J Gen Physiol. 1981;77:349–71.

    Article  CAS  PubMed  Google Scholar 

  77. Chapouly C, Guimbal S, Hollier P-L, Renault M-A. Role of hedgehog signaling in vasculature development, differentiation, and maintenance. Int J Mol Sci. 2019;20:3076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Search Results | ClinicalTrials.gov. https://clinicaltrials.gov/search?term=Vismodegib.

  79. Alvarez JI, et al. The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011;334:1727–31.

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Yang J, et al. New insight into neurological degeneration: Inflammatory cytokines and blood–brain barrier. Front Mol Neurosci. 2022;15:1013933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pipkin ME, et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity. 2010;32:79–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lepennetier G, et al. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J Neuroinflammation. 2019;16:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kumar S, Singh P, Vyas S, Modi M, Agarwal V, Goyal MK, Sankhyan N. Assessment of blood-brain barrier integrity in tuberculous meningitis using dynamic contrast-enhanced MR perfusion. Indian J Radiol Imaging. 2021;31(1):30–6. https://doi.org/10.1055/s-0041-1729119.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sánchez-Garibay C, et al. Mycobacterium tuberculosis infection induces BCSFB disruption but No BBB disruption in vivo: implications in the pathophysiology of tuberculous meningitis. Int J Mol Sci. 2022;23:6436.

    Article  PubMed  PubMed Central  Google Scholar 

  85. MacAulay N, Keep RF, Zeuthen T. Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS. 2022;19:26.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang X, et al. Single-cell analysis reveals changes in BCG vaccine-injected mice modeling tuberculous meningitis brain infection. Cell Rep. 2023;42:112177.

    Article  CAS  PubMed  Google Scholar 

  87. Ruiz-Bedoya CA, et al. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J Clin Invest. 2022;132:e155851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zucchi FCR, et al. The contribution of a murine CNS-TB model for the understanding of the host–pathogen interactions in the formation of granulomas. J Neurosci Methods. 2012;206:88–93.

    Article  PubMed  Google Scholar 

  89. Van Well GThJ, et al. A new murine model to study the pathogenesis of tuberculous meningitis. J Infect Dis. 2007;195:694–7.

    Article  PubMed  Google Scholar 

  90. Mirzayi P, Shobeiri P, Kalantari A, Perry G, Rezaei N. Optogenetics: implications for Alzheimer’s disease research and therapy. Mol Brain. 2022;15:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang J, Cui H, Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. Am J Physiol-Regul Integr Comp Physiol. 2017;313:R633–45.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gholami Pourbadie H, Sayyah M. Optogenetics: Control of brain using light. Iran Biomed J. 2018;22(1):4–5.

    PubMed  Google Scholar 

  93. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.

    Article  CAS  PubMed  Google Scholar 

  94. De Sousa AF, et al. Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proc Natl Acad Sci. 2019;116:8576–81.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  95. Liu X, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012;484:381–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee HU, et al. Subcellular optogenetic stimulation for activity-dependent myelination of axons in a novel microfluidic compartmentalized platform. ACS Chem Neurosci. 2016;7:1317–24.

    Article  CAS  PubMed  Google Scholar 

  97. Ferenczi EA, Tan X, Huang CL-H. Principles of optogenetic methods and their application to cardiac experimental systems. Front Physiol. 2019;10:1096.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vogt M, et al. Direct optogenetic stimulation of smooth muscle cells to control gastric contractility. Theranostics. 2021;11:5569–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bruegmann T, et al. Optogenetic control of contractile function in skeletal muscle. Nat Commun. 2015;6:7153.

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Koren T, et al. Insular cortex neurons encode and retrieve specific immune responses. Cell. 2021;184(24):5902-5915.e17. https://doi.org/10.1016/j.cell.2021.10.013.

  101. Sarris M, Olekhnovitch R, Bousso P. Manipulating leukocyte interactions in vivo through optogenetic chemokine release. Blood. 2016;127:e35–41.

    Article  CAS  PubMed  Google Scholar 

  102. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun. 2002;70:4501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vaghela R, Arkudas A, Horch RE, Hessenauer M. Actually seeing what is going on - Intravital microscopy in tissue engineering. Front Bioeng Biotechnol. 2021;17(9):627462. https://doi.org/10.3389/fbioe.2021.627462

    Article  Google Scholar 

  104. Møllgård K, et al. A mesothelium divides the subarachnoid space into functional compartments. Science. 2023;379:84–8.

    Article  ADS  PubMed  Google Scholar 

  105. Lerner TR, et al. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis. J Clin Invest. 2016;126(3):1093–108. https://doi.org/10.1172/JCI83379.

  106. Zheng T, et al. Imaging mitochondria through bone in live mice using two-photon fluorescence microscopy with adaptive optics. Front Neuroimaging. 2023;2:959601. https://doi.org/10.3389/fnimg.2023.959601

  107. Wang Z, McCracken S, Williams PR. Transpupillary Two-photon In vivo Imaging of the Mouse Retina. J Vis Exp. 2021;(168):10.3791/61970. https://doi.org/10.3791/61970.

  108. Rustad TR, et al. Global analysis of mRNA stability in Mycobacterium tuberculosis. Nucleic Acids Res. 2013;41:509–17.

    Article  CAS  PubMed  Google Scholar 

  109. Hao Y, Thomas AM, Li N. Fully autonomous mouse behavioral and optogenetic experiments in home-cage. eLife. 2021;10:e66112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Arroyo-Olarte RD, Thurow L, Kozjak-Pavlovic V, Gupta N. Illuminating pathogen–host intimacy through optogenetics. Plos Pathog. 2018;14:e1007046.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Navarro-Flores A, Fernandez-Chinguel JE, Pacheco-Barrios N, Soriano-Moreno DR, Pacheco-Barrios K. Global morbidity and mortality of central nervous system tuberculosis: a systematic review and meta-analysis. J Neurol. 2022;269(7):3482–94. https://doi.org/10.1007/s00415-022-11052-8. This systematic review uses recent socio-economic data and relevant TBM literature to estimate the global prevalence of TBM.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Seddon JA, Tugume L, Solomons R, Prasad K, Bahr NC. Tuberculous Meningitis International Research Consortium. The current global situation for tuberculous meningitis: epidemiology, diagnostics, treatment and outcomes. Wellcome Open Res. 2019;4:167. https://doi.org/10.12688/wellcomeopenres.15535.1. A recent and relevant review on TBM. Challenges associated with TBM are clearly highlighted. On-going and completed clinical trials for TBM are listed.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. John Walrond (College of Veterinary Medicine and Biomedical Sciences, Colorado State University) for providing patient insight on neurobiology.

Funding

Monfort family professor award 2022.

Colorado State University, Microbiology, Immunology and Pathology, Henao-Tamayo start-up funds.

Author information

Authors and Affiliations

Authors

Contributions

S.H. wrote the main manuscript and created the figures F.L. helped with portions of the manuscript and guided the literature review J.G. helped with portions of the manuscript A.O.H helped with portions of the manuscript, guided the literature review, revised and edited M.H.T helped with portions of the manuscript, revised, edited and funded All authors reviewed the manuscript.

Corresponding author

Correspondence to Marcela Henao-Tamayo.

Ethics declarations

Declarations

This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests

The Authors have no financial conflicts to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hokeness, S., Lanni, F., Glycenfer, J. et al. Tuberculous Meningitis: an Update on the Pathogenesis and Neuroimmunology. Curr Trop Med Rep 11, 1–10 (2024). https://doi.org/10.1007/s40475-023-00310-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-023-00310-y

Keywords

Navigation