Advertisement

Current Tropical Medicine Reports

, Volume 4, Issue 3, pp 117–126 | Cite as

The Current Status of Extracellular Polymeric Substances Produced by Burkholderia pseudomallei

  • Mihnea R. Mangalea
  • Grace I. Borlee
  • Bradley R. Borlee
Melioidosis and Tropical Bacteriology (A Torres, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Melioidosis and Tropical Bacteriology

Abstract

Purpose of Review

Extracellular polymeric substances (EPS) that are produced by Burkholderia pseudomallei consist of diverse structural components that serve equally diverse protective and antigenic functions. B. pseudomallei is a sapronotic disease agent that transitions from the environment to cause severe infection in humans and animals. EPS components are proposed to play a critical role in transmission, dissemination, and protection of the bacteria in these varied environments. However, many of these components remain uncharacterized, and there is a lack of consensus regarding classification of these EPS components.

Recent Findings

Bioinformatics, mutational studies, and transcriptional profiling of biofilms have identified additional EPS components, which include exopolysaccharides, capsular polysaccharides, proteins, and extracellular DNA.

Summary

The current status of B. pseudomallei EPS components is presented here. However, the nomenclature regarding extracellular polymeric substances from Burkholderia spp. is not consistent. We sought to illuminate these differences to facilitate communication between researchers working with Burkholderia spp.

Keywords

Biofilm Extracellular polymeric substances Exopolysaccharide Capsule Burkholderia 

Abbreviations

Bpc

Burkholderia pseudomallei complex

Bcc

Burkholderia cepacia complex

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Flemming HC. EPS-Then and Now. Microorganisms. 2016;4(4). A comprehensive recent review on the history of EPS matrix characterization, including functional roles of and physical properties of the EPS components for bacteria in general. Google Scholar
  2. 2.
    Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 2007;189(22):7945–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gunn JS, Bakaletz LO, Wozniak DJ. What’s on the outside matters: the role of the extracellular polymeric substance of Gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J Biol Chem. 2016;291(24):12538–46.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Roberson EB, Firestone MK. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol. 1992;58(4):1284–91.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ramli NS, Eng Guan C, Nathan S, Vadivelu J. The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates. PLoS One. 2012;7(9):e44104.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Prasertsincharoen N, Constantinoiu C, Gardiner C, Warner J, Elliman J. Effects of colonization of the roots of domestic Rice (Oryza sativa L. cv. Amaroo) by Burkholderia pseudomallei. Appl Environ Microbiol. 2015;81(13):4368–75.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Inglis TJ, Sagripanti JL. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl Environ Microbiol. 2006;72(11):6865–75.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One. 2010;5(2):e9196.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pibalpakdee P, Wongratanacheewin S, Taweechaisupapong S, Niumsup PR. Diffusion and activity of antibiotics against Burkholderia pseudomallei biofilms. Int J Antimicrob Agents. 2012;39(4):356–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Vorachit M, Lam K, Jayanetra P, Costerton JW. Resistance of Pseudomonas pseudomallei growing as a biofilm on silastic discs to ceftazidime and co-trimoxazole. Antimicrob Agents Chemother. 1993;37(9):2000–2.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Taweechaisupapong S, Kaewpa C, Arunyanart C, Kanla P, Homchampa P, Sirisinha S, et al. Virulence of Burkholderia pseudomallei does not correlate with biofilm formation. Microb Pathog. 2005;39(3):77–85.CrossRefPubMedGoogle Scholar
  12. 12.
    • Limmathurotsakul D, Paeyao A, Wongratanacheewin S, Saiprom N, Takpho N, Thaipadungpanit J, et al. Role of Burkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis. Clin Microbiol Infect. 2014;20(11):O854–6. Case study highlighting the role of biofilm formation in melioidosis relapse. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Reckseidler SL, DeShazer D, Sokol PA, Woods DE. Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun. 2001;69(1):34–44.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cuccui J, Milne TS, Harmer N, George AJ, Harding SV, Dean RE, et al. Characterization of the Burkholderia pseudomallei K96243 capsular polysaccharide I coding region. Infect Immun. 2012;80(3):1209–21.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Reckseidler-Zenteno SL, Viteri DF, Moore R, Wong E, Tuanyok A, Woods DE. Characterization of the type III capsular polysaccharide produced by Burkholderia pseudomallei. J Med Microbiol. 2010;59(Pt 12):1403–14.CrossRefPubMedGoogle Scholar
  16. 16.
    Ferreira AS, Leitao JH, Silva IN, Pinheiro PF, Sousa SA, Ramos CG, et al. Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl Environ Microbiol. 2010;76(2):441–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Ortega X, Hunt TA, Loutet S, Vinion-Dubiel AD, Datta A, Choudhury B, et al. Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol. 2005;187(4):1324–33.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    •• Borlee GI, Plumley BA, Martin KH, Somprasong N, Mangalea MR, Islam MN, et al. Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster. PLoS Negl Trop Dis. 2017;11(6). Identifies a novel exopolysaccharide gene cluster in B. pseudomallei and analyzes homology for this cluster, and other EPS-associated gene clusters, among Bcc species e0005689. Google Scholar
  19. 19.
    Moreira LM, Videira PA, Sousa SA, Leitao JH, Cunha MV, Sa-Correia I. Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun. 2003;312(2):323–33.CrossRefPubMedGoogle Scholar
  20. 20.
    • Cuzzi B, Herasimenka Y, Silipo A, Lanzetta R, Liut G, Rizzo R, et al. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation. PLoS One. 2014;9(4):e94372. A comprehensive comparative analysis of exopolysaccharides produced by Bcc, identifying novel structures and highlighting discrepencies based on biofilm growth conditions. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nimtz M, Wray V, Domke T, Brenneke B, Haussler S, Steinmetz I. Structure of an acidic exopolysaccharide of Burkholderia pseudomallei. Eur J Biochem. 1997;250(2):608–16.CrossRefPubMedGoogle Scholar
  22. 22.
    Butt A, Halliday N, Williams P, Atkins HS, Bancroft GJ, Titball RW. Burkholderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming and persistence. Res Microbiol. 2016;167(3):159–67.Google Scholar
  23. 23.
    Lazar Adler NR, Dean RE, Saint RJ, Stevens MP, Prior JL, Atkins TP, et al. Identification of a predicted trimeric autotransporter adhesin required for biofilm formation of Burkholderia pseudomallei. PLoS One. 2013;8(11):e79461.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Campos CG, Byrd MS, Cotter PA. Functional characterization of Burkholderia pseudomallei trimeric autotransporters. Infect Immun. 2013;81(8):2788–99.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Balder R, Lipski S, Lazarus JJ, Grose W, Wooten RM, Hogan RJ, et al. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells. BMC Microbiol. 2010;10:250.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    •• Adler NRL, Stevens MP, Dean RE, Saint RJ, Pankhania D, Prior JL, et al. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance. PLoS One. 2015;10(4). Transposon mutagenesis study analyzes all predicted autotransporter genes in B. pseudomallei and their contribution to pathogenesis and biofilm formation. Google Scholar
  27. 27.
    Campos CG, Borst L, Cotter PA. Characterization of BcaA, a putative classical autotransporter protein in Burkholderia pseudomallei. Infect Immun. 2013;81(4):1121–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Garcia EC, Anderson MS, Hagar JA, Cotter PA. Burkholderia BcpA mediates biofilm formation independently of interbacterial contact-dependent growth inhibition. Mol Microbiol. 2013;89(6):1213–25.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    •• Garcia EC, Perault AI, Marlatt SA, Cotter PA. Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins. Proc Natl Acad Sci U S A. 2016;113(29):8296–301. Investigates the role of BcpA in the sociomicrobiology of B. thailandensis biofilms and its effects on gene expression. RNA-seq analysis identifies putative polysaccharide biosynthesis loci that are regulated by BcpA. Google Scholar
  30. 30.
    Anderson MS, Garcia EC, Cotter PA. The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems. PLoS Genet. 2012;8(8):e1002877.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Steinmetz I, Rohde M, Brenneke B. Purification and characterization of an exopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. Infect Immun. 1995;63(10):3959–65.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cescutti P, Cuzzi B, Herasimenka Y, Rizzo R. Structure of a novel exopolysaccharide produced by Burkholderia vietnamiensis, a cystic fibrosis opportunistic pathogen. Carbohydr Polym. 2013;94(1):253–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Cescutti P, Impallomeni G, Garozzo D, Rizzo R. O-Acetyl location on cepacian, the principal exopolysaccharide of Burkholderia cepacia complex bacteria. Carbohydr Res. 2011;346(18):2905–12.CrossRefPubMedGoogle Scholar
  34. 34.
    Cescutti P, Impallomeni G, Garozzo D, Sturiale L, Herasimenka Y, Lagatolla C, et al. Exopolysaccharides produced by a clinical strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydr Res. 2003;338(23):2687–95.CrossRefPubMedGoogle Scholar
  35. 35.
    Chiarini L, Cescutti P, Drigo L, Impallomeni G, Herasimenka Y, Bevivino A, et al. Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB. J Cyst Fibros. 2004;3(3):165–72.CrossRefPubMedGoogle Scholar
  36. 36.
    Herasimenka Y, Cescutti P, Impallomeni G, Campana S, Taccetti G, Ravenni N, et al. Exopolysaccharides produced by clinical strains belonging to the Burkholderia cepacia complex. J Cyst Fibros. 2007;6(2):145–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker-Nielsen T. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. Microbiol Open. 2013;2(1):105–22.CrossRefGoogle Scholar
  38. 38.
    Laroussarie A, Barycza B, Andriamboavonjy H, Tamigney Kenfack M, Bleriot Y, Gauthier C. Synthesis of the tetrasaccharide repeating unit of the beta-Kdo-containing exopolysaccharide from Burkholderia pseudomallei and B. cepacia complex. J Org Chem. 2015;80(20):10386–96.CrossRefPubMedGoogle Scholar
  39. 39.
    Messiaen AS, Nelis H, Coenye T. Investigating the role of matrix components in protection of Burkholderia cepacia complex biofilms against tobramycin. J Cyst Fibros. 2014;13(1):56–62.CrossRefPubMedGoogle Scholar
  40. 40.
    Novotny LA, Amer AO, Brockson ME, Goodman SD, Bakaletz LO. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein. PLoS One. 2013;8(6):e67629.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    • Dando SJ, Ipe DS, Batzloff M, Sullivan MJ, Crossman DK, Crowley M, et al. Burkholderia pseudomallei capsule exacerbates respiratory melioidosis but does not afford protection against antimicrobial signaling or bacterial killing in human olfactory ensheathing cells. Infect Immun. 2016;84(7):1941–56. Transcriptomic profiling of a human cell line identified biological signlaing pathways in response to CPS I infection and also further describes the role of CPS I for B. pseudomallei survival in vivo. Google Scholar
  42. 42.
    Reckseidler-Zenteno SL, DeVinney R, Woods DE. The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun. 2005;73(2):1106–15.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Marchetti R, Dillon MJ, Burtnick MN, Hubbard MA, Kenfack MT, Bleriot Y, et al. Burkholderia pseudomallei capsular polysaccharide recognition by a monoclonal antibody reveals key details toward a biodefense vaccine and diagnostics against Melioidosis. ACS Chem Biol. 2015;10(10):2295–302.CrossRefPubMedGoogle Scholar
  44. 44.
    Whitfield C. Bacterial extracellular polysaccharides. Can J Microbiol. 1988;34(4):415–20.CrossRefPubMedGoogle Scholar
  45. 45.
    Roberts IS. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol. 1996;50:285–315.CrossRefPubMedGoogle Scholar
  46. 46.
    Tuanyok A, Mayo M, Scholz H, Hall CM, Allender CJ, Kaestli M, et al. Burkholderia humptydooensis sp. nov., a new species related to Burkholderia thailandensis and the fifth member of the Burkholderia pseudomallei complex. Appl Environ Microbiol. 2017;83(5)Google Scholar
  47. 47.
    Sahl JW, Vazquez AJ, Hall CM, Busch JD, Tuanyok A, Mayo M, et al. The effects of signal erosion and core genome reduction on the identification of diagnostic markers. MBio. 2016;7(5)Google Scholar
  48. 48.
    Warawa JM, Long D, Rosenke R, Gardner D, Gherardini FC. Role for the Burkholderia pseudomallei capsular polysaccharide encoded by the wcb operon in acute disseminated melioidosis. Infect Immun. 2009;77(12):5252–61.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yakandawala N, Gawande PV, LoVetri K, Cardona ST, Romeo T, Nitz M, et al. Characterization of the poly-beta-1,6-N-acetylglucosamine polysaccharide component of Burkholderia biofilms. Appl Environ Microbiol. 2011;77(23):8303–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cescutti P, Bosco M, Picotti F, Impallomeni G, Leitao JH, Richau JA, et al. Structural study of the exopolysaccharide produced by a clinical isolate of Burkholderia cepacia. Biochem Biophys Res Commun. 2000;273(3):1088–94.CrossRefPubMedGoogle Scholar
  51. 51.
    Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A. 2004;101(39):14240–5.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sim SH, Yu Y, Lin CH, Karuturi RK, Wuthiekanun V, Tuanyok A, et al. The core and accessory genomes of Burkholderia pseudomallei: implications for human melioidosis. PLoS Pathog. 2008;4(10):e1000178.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kumar AS, Mody K, Jha B. Bacterial exopolysaccharides--a perception. J Basic Microbiol. 2007;47(2):103–17.CrossRefPubMedGoogle Scholar
  54. 54.
    Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33.PubMedGoogle Scholar
  55. 55.
    Plumley BA, Martin KH, Borlee GI, Marlenee NL, Burtnick MN, Brett PJ, et al. Thermoregulation of biofilm formation in Burkholderia pseudomallei is disrupted by mutation of a putative diguanylate cyclase. J Bacteriol. 2017;199(5).Google Scholar
  56. 56.
    • Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, et al. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. BMC Genomics. 2015;16:471. RNA-seq analysis identifies loci that are predicted to contribute to the production of EPS matrix components and provides a complete transcriptome profile of biofilm production in B. pseudomallei.Google Scholar
  57. 57.
    • Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains. Microbiol Immunol. 2015;59(11):653–63. Proposes biosynthetic pathways for nucleotide sugar precursors to exopolysaccharides and analyzes the carbohydrate composition of B. pseudomallei biofilms. CrossRefPubMedGoogle Scholar
  58. 58.
    •• Tseng BS, Majerczyk CD, Passos da Silva D, Chandler JR, Greenberg EP, Parsek MR. Quorum sensing influences Burkholderia thailandensis biofilm development and matrix production. J Bacteriol. 2016;198(19):2643–50. Identifies a novel fucose-rich exopolysaccharide produced by biofilm "dome" structures in B. thailandensis and investigates quorum sensing contributions to biofilm development. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gamage AM, Shui G, Wenk MR, Chua KL. N-Octanoylhomoserine lactone signalling mediated by the BpsI-BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei. Microbiology. 2011;157(Pt 4):1176–86.CrossRefPubMedGoogle Scholar
  60. 60.
    Chandler JR, Duerkop BA, Hinz A, West TE, Herman JP, Churchill ME, et al. Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J Bacteriol. 2009;191(19):5901–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Majerczyk C, Brittnacher M, Jacobs M, Armour CD, Radey M, Schneider E, et al. Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon. J Bacteriol. 2014;196(7):1412–24.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    • Majerczyk CD, Brittnacher MJ, Jacobs MA, Armour CD, Radey MC, Bunt R, et al. Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons. J Bacteriol. 2014;196(22):3862–71. Transcriptomics study identifies CPS II as being strongly activated by quorum sensing. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, et al. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol. 2011;82(2):327–41.CrossRefPubMedGoogle Scholar
  64. 64.
    Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeno-Tarraga AM, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009;191(1):261–77.CrossRefPubMedGoogle Scholar
  65. 65.
    Romling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 2013;77(1):1–52.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    • Stone JK, Heiss C, Wang Z, Black I, Grasso SA, Koppisch AT, et al. Structural characterization of polysaccharides expressed by Burkholderia oklahomensis E0147. Carbohydr Res. 2014;386:68–72. Identifies an exopolysaccharide in B. oklahomensis that is identical to B. pseudomallei and B. cepacia and analyzes the methylation and acetylation profiles of this exopolysaccharide across Burkholderia spp. Google Scholar
  67. 67.
    Vivoli M, Ayres E, Beaumont E, Isupov MN, Harmer NJ. Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme. IUCrJ. 2014;1(Pt 1):28–38.CrossRefPubMedGoogle Scholar
  68. 68.
    Wikraiphat C, Charoensap J, Utaisincharoen P, Wongratanacheewin S, Taweechaisupapong S, Woods DE, et al. Comparative in vivo and in vitro analyses of putative virulence factors of Burkholderia pseudomallei using lipopolysaccharide, capsule and flagellin mutants. FEMS Immunol Med Microbiol. 2009;56(3):253–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Perry MB, MacLean LL, Schollaardt T, Bryan LE, Ho M. Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei. Infect Immun. 1995;63(9):3348–52.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Tuanyok A, Stone JK, Mayo M, Kaestli M, Gruendike J, Georgia S, et al. The genetic and molecular basis of O-antigenic diversity in Burkholderia pseudomallei lipopolysaccharide. PLoS Negl Trop Dis. 2012;6(1):e1453.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Heiss C, Burtnick MN, Roberts RA, Black I, Azadi P, Brett PJ. Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei. Carbohydr Res. 2013;381:6–11.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Burtnick MN, Brett PJ, Woods DE. Molecular and physical characterization of Burkholderia mallei O antigens. J Bacteriol. 2002;184(3):849–52.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Heiss C, Burtnick MN, Black I, Azadi P, Brett PJ. Detailed structural analysis of the O-polysaccharide expressed by Burkholderia thailandensis E264. Carbohydr Res. 2012;363:23–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Muangman S, Korbsrisate S, Muangsombut V, Srinon V, Adler NL, Schroeder GN, et al. BopC is a type III secreted effector protein of Burkholderia pseudomallei. FEMS Microbiol Lett. 2011;323(1):75–82.CrossRefPubMedGoogle Scholar
  75. 75.
    Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci U S A. 2013;110(28):11541–6.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Austin CR, Goodyear AW, Bartek IL, Stewart A, Sutherland MD, Silva EB, et al. A Burkholderia pseudomallei colony variant necessary for gastric colonization. MBio. 2015;6(1)Google Scholar
  77. 77.
    • Nualnoi T, Kirosingh A, Pandit SG, Thorkildson P, Brett PJ, Burtnick MN, et al. In vivo distribution and clearance of purified capsular polysaccharide from Burkholderia pseudomallei in a murine model. PLoS Negl Trop Dis. 2016;10(12):e0005217. Examines the role of CPS I as a biomarker for melioidosis diagnosis. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Pumpuang A, Dunachie SJ, Phokrai P, Jenjaroen K, Sintiprungrat K, Boonsilp S, et al. Comparison of O-polysaccharide and hemolysin co-regulated protein as target antigens for serodiagnosis of melioidosis. PLoS Negl Trop Dis. 2017;11(3):e0005499.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Titball RW, Burtnick MN, Bancroft GJ, Brett P. Burkholderia pseudomallei and Burkholderia mallei vaccines: are we close to clinical trials? Vaccine. 2017.Google Scholar
  80. 80.
    Suttisunhakul V, Chantratita N, Wikraiphat C, Wuthiekanun V, Douglas Z, Day NP, et al. Evaluation of polysaccharide-based latex agglutination assays for the rapid detection of antibodies to Burkholderia pseudomallei. Am J Trop Med Hyg. 2015;93(3):542–6.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Houghton RL, Reed DE, Hubbard MA, Dillon MJ, Chen H, Currie BJ, et al. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl Trop Dis. 2014;8(3):e2727.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mihnea R. Mangalea
    • 1
  • Grace I. Borlee
    • 1
  • Bradley R. Borlee
    • 1
  1. 1.Microbiology, Immunology, and Pathology DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations