Skip to main content

Advertisement

Log in

Biomarkers for ADHD: the Present and Future Directions

  • ADHD (G Kulkarni, Section Editor)
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders characterized by inattention, impulsivity, diminished executive functions, and hyperactivity. Objective criteria can be used to assess the diagnosis and response of the disease to medications.

Recent Findings

Several biomarkers belonging to electrophysiological, genetic, peripheral, and miRNA-based biomarkers have shown promise in studies to be an objective aid to clinical diagnostic criteria for the diagnosis of ADHD.

Summary

This review article focuses on summarizing the existing evidence for different biomarkers that have been studied in the past for diagnosing ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Still G. The Goulstonian lectures on some abnormal physical conditions in children. Lecture 1. Lancet. 1902;i 1008–0102:1077–82 1163–1168.

    Google Scholar 

  2. Douglas VI. Stop, look and listen: the problem of sustained attention and impulse control in hyperactive and normal children. Can J Behav Sci. 1972;4:259–82.

    Google Scholar 

  3. Childress AC, Berry SA. Pharmacotherapy of attention-deficit hyperactivity disorder in adolescents. Drugs. 2012;72:309–25. https://doi.org/10.2165/11599580-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  4. American Psychiatric Association. Attention-deficit and disruptive behavior disorders. In: Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington: American Psychiatric Association; 2013.

    Google Scholar 

  5. Zametkin AJ, Ernst M. Problems in the management of attention-deficit-hyperactivity disorder. N Engl J Med. 1999;340:40–6.

    CAS  PubMed  Google Scholar 

  6. Mirsky AF, Duncan CC. A nosology of disorders of attention. Ann N Y Acad Sci. 2001;931:17–32.

    CAS  PubMed  Google Scholar 

  7. Daley KC. Update on attention-deficit/hyperactivity disorder. Curr Opin Pediatr. 2004;16:217–26.

    PubMed  Google Scholar 

  8. Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Therapeutics. 2001;69:89–95.

    Google Scholar 

  9. Jeste SS, Nelson CA 3rd. Event related potentials in the understanding of autism spectrum disorders: an analytical review. J Autism Dev Disord. 2009;39:495–510.

    PubMed  Google Scholar 

  10. Lubar JF. Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback Self Regul. 1991;16:201–25.

    CAS  PubMed  Google Scholar 

  11. Monastra VJ, Lubar JF, Linden M. The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: reliability and validity studies. Neuropsychology. 2001;15:136–44.

    CAS  PubMed  Google Scholar 

  12. Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol. 2006;23:440–55.

    PubMed  Google Scholar 

  13. Snyder SM, Quintana H, Sexson SB, Knott P, Haque AFM, Reynolds DA. Blinded, multicenter validation of EEG and rating scales in identifying ADHD within a clinical sample. Psychiatry Res. 2008;159:346–58.

    PubMed  Google Scholar 

  14. Buyck I, Wiersema JR. Resting electroencephalogram in attention deficit hyperactivity disorder: developmental course and diagnostic value. Psychiatry Res. 2014;216:391–7.

    PubMed  Google Scholar 

  15. Liechti MD, Valko L, Muller UC, et al. Diagnostic value of resting electroencephalogram in attention-deficit/hyperactivity disorder across the lifespan. Brain Topogr. 2013;26:135–51.

    PubMed  Google Scholar 

  16. Loo SK, Cho A, Hale TS, McGough J, McCracken J, Smalley SL. Characterization of the theta to beta ratio in ADHD: identifying potential sources of heterogeneity. J Atten Disord. 2013;17:384–92.

    PubMed  Google Scholar 

  17. Nazari MA, Wallois F, Aarabi A, Berquin P. Dynamic changes in quantitative electroencephalogram during continuous performance test in children with attention-deficit/hyperactivity disorder. Int J Psychophysiol. 2011;81:230–6.

    PubMed  Google Scholar 

  18. Ogrim G, Kropotov J, Hestad K. The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: sensitivity, specificity, and behavioral correlates. Psychiatry Res. 2012;198:482–8.

    PubMed  Google Scholar 

  19. van Dongen-Boomsma M, Lansbergen MM, Bekker EM, Sandra Kooij JJ, van der Molen M, Kenemans JL, et al. Relation between resting EEG to cognitive performance and clinical symptoms in adults with attention-deficit/hyperactivity disorder. Neurosci Lett. 2010;469:102–6.

    PubMed  Google Scholar 

  20. Williams LM, Hermens DF, Thein T, Clark CR, Cooper NJ, Clarke SD, et al. Using brain-based cognitive measures to support clinical decisions in ADHD. Pediatr Neurol. 2010;42:118–26.

    PubMed  Google Scholar 

  21. Arns M, Conners CK, Kraemer HC. A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord. 2013;17:374–83.

    PubMed  Google Scholar 

  22. Banaschewski T, Brandeis D, Heinrich H, Albrecht B, Brunner E, Rothenberger A. Association of ADHD and conduct disorder–brain electrical evidence for the existence of a distinct subtype. J Child Psychol Psychiatry Allied Discip. 2003;44(3):356–76.

    Google Scholar 

  23. Banaschewski T, Brandeis D, Heinrich H, Albrecht B, Brunner E, Rothenberger A. Questioning inhibitory control as the specific deficit of ADHD—evidence from brain electrical activity. J Neural Transm. 2004;111(7):841–64. https://doi.org/10.1007/s00702-003-0040-8.

    Article  CAS  PubMed  Google Scholar 

  24. Valko L, Doehnert M, Muller UC, Schneider G, Albrecht B, Drechsler R, et al. Differences in neurophysiological markers of inhibitory and temporal processing deficits in children and adults with ADHD. J Psychophysiol. 2009;23(4):235–46. https://doi.org/10.1027/0269-8803.23.4.235.

    Article  Google Scholar 

  25. van Leeuwen TH, Steinhausen HC, Overtoom CC, Pascual-Marqui RD, van’t Klooster B, Rothenberger A, et al. The continuous performance test revisited with neuroelectric mapping: impaired orienting in children with attention deficits. Behav Brain Res. 1998;94(1):97–110.

    PubMed  Google Scholar 

  26. Fallgatter AJ, Ehlis AC, Rosler M, Strik WK, Blocher D, Herrmann MJ. Diminished prefrontal brain function in adults with psychopathology in childhood related to attention deficit hyperactivity disorder. Psychiatry Res. 2005;138(2):157–69. https://doi.org/10.1016/j.pscychresns.2004.12.002.

    Article  PubMed  Google Scholar 

  27. Mueller A, Candrian G, Grane VA, Kropotov JD, Ponomarev VA, Baschera GM. Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study. Nonlinear Biomed Phys. 2011;5:5. https://doi.org/10.1186/1753-4631-5-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liechti MD, Maurizio S, Heinrich H, Jäncke L, Meier L, Steinhausen HC, et al. First clinical trial of tomographic neurofeedback in attention-deficit/hyperactivity disorder: evaluation of voluntary cortical control. Clin Neurophysiol. 2012;123(10):1989–2005. https://doi.org/10.1016/j.clinph.2012.03.016.

    Article  PubMed  Google Scholar 

  29. Thapar A, Cooper M, Eyre O, Langley K. What have we learnt about the causes of ADHD? J Child Psychol Psychiatry. 2013;54:3–16. https://doi.org/10.1111/j.1469-7610.2012.02611.x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hawi Z, Cummins TD, Tong J, Johnson B, Lau R, Samarrai W, et al. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry. 2015;20:289–97. https://doi.org/10.1038/mp.2014.183.

    Article  CAS  PubMed  Google Scholar 

  31. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. https://doi.org/10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mill J, Petronis A. Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry. 2008;49:1020–30. https://doi.org/10.1111/j.1469-7610.2008.01909.x.

    Article  PubMed  Google Scholar 

  33. Schuch V, Utsumi DA, Costa TV, Kulikowski LD, Muszkat M. Attention deficit hyperactivity disorder in the light of the epigenetic paradigm. Front Psychiatry. 2015;6:126. https://doi.org/10.3389/fpsyt.2015.00126.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006;7:911–20. https://doi.org/10.1038/nrn2037.

    Article  CAS  PubMed  Google Scholar 

  35. Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res. 2010;1338:89–99. https://doi.org/10.1016/j.brainres.2010.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Geaghan M, Cairns MJ. MicroRNA and posttranscriptional dysregulation in psychiatry. Biol Psychiatry. 2015;78:231–9. https://doi.org/10.1016/j.biopsych.2014.12.009.

    Article  CAS  PubMed  Google Scholar 

  37. Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16:201–12. https://doi.org/10.1038/nrn3879.

    Article  CAS  PubMed  Google Scholar 

  38. • Wu L, Zhao Q, Zhu X, Peng M, Jia C, Wu W, et al. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol. 2010;20:1042–54. https://doi.org/10.1111/j.1750-3639.2010.00410.xThis study reported that Rno-let-7d was increased in animal models of ADHD also regulated galectin-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong Q, Yang L, Zhang M, Pan XQ, Guo M, Fei L, et al. Increased locomotor activity and non-selective attention and impaired learning ability in SD rats after lentiviral vector-mediated RNA interference of Homer 1a in the brain. Int J Med Sci. 2013;10:90–102. https://doi.org/10.7150/ijms.4892.

    Article  CAS  PubMed  Google Scholar 

  40. Yang L, Hong Q, Zhang M, Liu X, Pan XQ, Guo M, et al. The role of Homer 1a in increasing locomotor activity and non-selective attention, and impairing learning and memory abilities. Brain Res. 2013;1515:39–47. https://doi.org/10.1016/j.brainres.2013.03.030.

    Article  CAS  PubMed  Google Scholar 

  41. Pietrzykowski AZ, Spijker S. Impulsivity and comorbid traits: a multi-step approach for finding putative responsible microRNAs in the amygdala. Front Neurosci. 2014;8:389. https://doi.org/10.3389/fnins.2014.00389.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu LH, Cheng W, Yu M, He BM, Sun H, Chen Q, et al. Nr3C1-Bhlhb2 axis dysregulation is involved in the development of attention deficit hyperactivity. Mol Neurobiol. 2017;54:1196–212. https://doi.org/10.1007/s12035-015-9679-z.

    Article  CAS  PubMed  Google Scholar 

  43. Kandemir H, Erdal ME, Selek S, Ay ÖI, Karababa IF, Kandemir SB, et al. Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neurosci Lett. 2014;580:158–62. https://doi.org/10.1016/j.neulet.2014.07.060.

    Article  CAS  PubMed  Google Scholar 

  44. Wu LH, Peng M, Yu M, Zhao QL, Li C, Jin YT, et al. Circulating microRNA let-7d in attention-deficit/hyperactivity disorder. NeuroMolecular Med. 2015;17:137–46. https://doi.org/10.1007/s12017-015-8345-y.

    Article  CAS  PubMed  Google Scholar 

  45. Wu L, Zhao Q, Zhu X, Peng M, Jia C, Wu W, et al. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol. 2010;20(6):1042–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Wang L-J, Li S-C, Lee M-J, Chou M-C, Chou W-J, Lee S-Y, et al. Blood-bourne microRNA biomarker evaluation in attention-deficit/hyperactivity disorder of Han Chinese individuals: an exploratory study. Front Psychiatry. 2018;9:227. https://doi.org/10.3389/fpsyt.2018.00227This study identified 13 miRNAs as potential ADHD biomarkers that would aid in the diagnosis of ADHD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cortese S. The neurobiology and genetics of attention-deficit/ hyperactivity disorder (ADHD): what every clinician should know. Eur J Paediatr Neurol. 2012;16(5):422–33.

    PubMed  Google Scholar 

  48. Friedel S, Saar K, Sauer S, Dempfle A, Walitza S, Renner T, et al. Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol Psychiatry. 2007;12(10):923–33.

    CAS  PubMed  Google Scholar 

  49. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet. 2009;126(1):51–90.

    CAS  PubMed  Google Scholar 

  50. Franke B, Faraone SV, Asherson P, Buitelaar J, Bau CHD, Ramos-Quiroga JA, et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol Psychiatry. 2012;17(10):960–87.

    CAS  PubMed  Google Scholar 

  51. Kebir O, Joober R. Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: a review of genetic association studies. Eur Arch Psychiatry Clin Neurosci. 2011;261(8):583–94.

    PubMed  Google Scholar 

  52. Barnes JJM, Dean AJ, Nandam LS, O’Connell RG, Bellgrove MA. The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry. 2011;69(12):E127–43.

    CAS  PubMed  Google Scholar 

  53. McGough JJ. Attention deficit hyperactivity disorder pharmacogenetics: the dopamine transporter and D4 receptor. Pharmacogenomics. 2012;13(4):365–8.

    CAS  PubMed  Google Scholar 

  54. Bruxel EM, Akutagava-Martins GC, Salatino-Oliveira A, Contini V, Kieling C, Hutz MH, et al. ADHD pharmacogenetics across the life cycle: new findings and perspectives. Am J Med Genet B Neuropsychiatr Genet. 2014;165:263–82.

    CAS  Google Scholar 

  55. Kambeitz J, Romanos M, Ettinger U. Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD. Pharm J. 2014;14(1):77–84.

    CAS  Google Scholar 

  56. Konrad K, Dempfle A, Friedel S, Heiser P, Holtkamp K, Walitza S, et al. Familiality and molecular genetics of attention networks in ADHD. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):148–58.

    PubMed  Google Scholar 

  57. Shang CY, Gau SSF. Association between the DAT1 gene and spatial working memory in attention deficit hyperactivity disorder. Int J Neuropsychopharmacol. 2014;17(1):9–21.

    CAS  PubMed  Google Scholar 

  58. Noaín D, Avale ME, Wedemeyer C, Calvo D, Peper M, Rubinstein M. Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic mice. Eur J Neurosci. 2006;24(9):2429–38.

    PubMed  Google Scholar 

  59. Taurines R, Grunblatt E, Schecklmann M, Schwenck C, Albantakis L, Reefschlager L, et al. Altered mRNA expression of monoaminergic candidate genes in the blood of children with attention deficit hyperactivity disorder and autism spectrum disorder. World J Biol Psychiatry. 2011;12:104–8.

    PubMed  Google Scholar 

  60. Wu J, Xiao HF, Sun HJ, Zou L, Zhu LQ. Role of dopamine receptors in ADHD: a systematic meta-analysis. Mol Neurobiol. 2012;45(3):605–20.

    CAS  PubMed  Google Scholar 

  61. Kebir O, Joober R. Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: a review of genetic association studies. Eur Arch Psychiatry Clin Neurosci. 2011;261(8):583–94.

    PubMed  Google Scholar 

  62. Barnes JJM, Dean AJ, Nandam LS, O’Connell RG, Bellgrove MA. The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry. 2011;69(12):E127–43.

    CAS  PubMed  Google Scholar 

  63. Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature. 2000;408(6809):199–203.

    CAS  PubMed  Google Scholar 

  64. Lasky-Su J, Neale BM, Franke B, Anney RJL, Zhou KX, Maller JB, et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B. 2008;147B(8):1345–54.

    CAS  Google Scholar 

  65. Winsberg BG, Comings DE. Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry. 1999;38(12):1474–7.

    CAS  PubMed  Google Scholar 

  66. Beischlag TV, Marchese A, Meador-Woodruff JH, Damask SP, O’Dowd BF, Tyndale RF, et al. The human dopamine D5 receptor gene: cloning and characterization of the 5′-flanking and promoter region. Biochemistry. 1995;34(17):5960–70.

    CAS  PubMed  Google Scholar 

  67. Manor I, Corbex M, Eisenberg J, Gritsenkso I, Bachner-Melman R, Tyano S, et al. Association of the dopamine D5 receptor with attention deficit hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA). Am J Med Genet B. 2004;127B(1):73–7.

    Google Scholar 

  68. Froehlich TE, McGough JJ, Stein MA. Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics. CNS Drugs. 2010;24(2):99–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stahl SM. Neurotransmission of cognition, part 3. Mechanism of action of selective NRIs: both dopamine and norepinephrine increase in prefrontal cortex. J Clin Psychiatry. 2003;64(3):230–1.

    PubMed  Google Scholar 

  70. Lasky-Su J, Neale BM, Franke B, Anney RJL, Zhou KX, Maller JB, et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B. 2008;147B(8):1345–54.

    CAS  Google Scholar 

  71. Mick E, Neale B, Middleton FA, McGough JJ, Faraone SV. Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am J Med Genet B. 2008;147B(8):1412–8.

    CAS  Google Scholar 

  72. Yang L, Qian Q, Liu L, Li H, Faraone SV, Wang Y. Adrenergic neurotransmitter system transporter and receptor genes associated with atomoxetine response in attention-deficit hyperactivity disorder children. J Neural Transm. 2013;120(7):1127–33.

    CAS  PubMed  Google Scholar 

  73. Meng WD, Sun SJ, Yang J, Chu RX, Tu W, Liu Q. Elevated serum brain-derived neurotrophic factor (BDNF) but not BDNF gene Val66Met polymorphism is associated with autism spectrum disorders. Mol Neurobiol. 2016;54:1167–72. https://doi.org/10.1007/s12035-016-9721-9.

    Article  CAS  PubMed  Google Scholar 

  74. de Azevedo CT, Mondin TC, Wiener CD, Marques MB, Fucolo Bde A, Pinheiro RT, et al. Neurotrophic factors, clinical features and gender differences in depression. Neurochem Res. 2014;39:1571–8.

    Google Scholar 

  75. Domingos da Silveira da Luz AC, Pereira Dias G, do Nascimento Bevilaqua MC, Cocks G, Gardino PF, Thuret S, et al. Translational findings on brain-derived neurotrophic factor and anxiety: contributions from basic research to clinical practice. Neuropsychobiology. 2013;68:129–38.

    CAS  PubMed  Google Scholar 

  76. Kotyuk E, Keszler G, Nemeth N, Ronai Z, Sasvari-Szekely M, Szekely A. Glial cell line-derived neurotrophic factor (GDNF) as a novel candidate gene of anxiety. PLoS One. 2013;8:e80613.

    PubMed  PubMed Central  Google Scholar 

  77. Vargas HE, Gama CS, Andreazza AC, Medeiros D, Stertz L, Fries G, et al. Decreased serum neurotrophin 3 in chronically medicated schizophrenic males. Neurosci Lett. 2008;440:197–201.

    CAS  PubMed  Google Scholar 

  78. Walz JC, Andreazza AC, Frey BN, Cacilhas AA, Cereser KM, Cunha AB, et al. Serum neurotrophin-3 is increased duringmanic and depressive episodes in bipolar disorder. Neurosci Lett. 2007;415:87–9.

    CAS  PubMed  Google Scholar 

  79. Wysokinski A. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia. Nord J Psychiatry. 2016;70:267–71.

    PubMed  Google Scholar 

  80. Bergman O, Westberg L, Lichtenstein P, Eriksson E, Larsson H. Study on the possible association of brain-derived neurotrophic factor polymorphism with the developmental course of symptoms of attention deficit and hyperactivity. Int J Neuropsychopharmacol. 2011;14:1367–76.

    CAS  PubMed  Google Scholar 

  81. Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:1824–8.

    CAS  Google Scholar 

  82. Li H, Liu L, Tang Y, Ji N, Yang L, Qian Q, et al. Sex-specific association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and plasma BDNF with attention-deficit/ hyperactivity disorder in a drug-naive Han Chinese sample. Psychiatry Res. 2014;217:191–7.

    CAS  PubMed  Google Scholar 

  83. Amiri A, Torabi Parizi G, Kousha M, Saadat F, Modabbernia MJ, Najafi K, et al. Changes in plasma brain-derived neurotrophic factor (BDNF) levels induced by methylphenidate in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;47:20–4.

    CAS  Google Scholar 

  84. Ramos-Quiroga JA, Corominas-Roso M, Palomar G, Gomez-Barros N, Ribases M, Sanchez-Mora C, et al. Changes in the serum levels of brain-derived neurotrophic factor in adults with attention deficit hyperactivity disorder after treatment with atomoxetine. Psychopharmacology. 2014;231:1389–95.

    CAS  PubMed  Google Scholar 

  85. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol. 2001;15:1748–57.

    CAS  PubMed  Google Scholar 

  86. Chourbaji S, Hellweg R, Brandis D, Zorner B, Zacher C, Lang UE, et al. Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res Mol Brain Res. 2004;121:28–36.

    CAS  PubMed  Google Scholar 

  87. Scassellati C, Zanardini R, Tiberti A, Pezzani M, Valenti V, Effedri P, et al. Serum brain-derived neurotrophic factor (BDNF) levels in attention deficit-hyperactivity disorder(ADHD). Eur Child Adolesc Psychiatry. 2014;23:173–7.

    PubMed  Google Scholar 

  88. Tzang RF, Hsu CD, Liou YJ, Hong CJ, Tsai SJ. Family based association of the brain-derived neurotrophic factor gene in attention-deficit hyperactivity disorder. Psychiatr Genet. 2013;23(4):177–8.

    PubMed  Google Scholar 

  89. Naumenko VS, Bazovkina DV, Semenova AA, Tsybko AS, Il’chibaeva TV, Kondaurova EM, et al. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders. J Neurosci Res. 2013;91:1628–38.

    CAS  PubMed  Google Scholar 

  90. Gerlai R, McNamara A, Choi-Lundberg DL, Armanini M, Ross J, Powell-Braxton L, et al. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. Eur J Neurosci. 2001;14:1153–63.

    CAS  PubMed  Google Scholar 

  91. •• Shim SH, Hwangbo Y, Yoon HJ, Kwon YJ, Lee HY, Hwang JA, et al. Increased levels of plasma glial-derived neurotrophic factor in children with attention deficit hyperactivity disorder. Nord J Psychiatry. 2015;69:546–51 This study was conducted on 86 drug naïve pediatric patients with ADHD which showed increased levels of plasma GDNF levels. The plasma GDNF levels showed a positive correlation with inattention and hyperactivity-impulsivity.

    PubMed  Google Scholar 

  92. Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med. 2012;10:239.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sarter M, Gehring WJ, Kozak R. More attention must be paid: the neurobiology of attentional effort. Brain Res Rev. 2006;51:145–60.

    PubMed  Google Scholar 

  94. Syed Z, Dudbridge F, Kent L. An investigation of the neurotrophic factor genes GDNF, NGF, and NT3 in susceptibility to ADHD. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:375–8.

    PubMed  Google Scholar 

  95. Maness LM, Kastin AJ, Weber JT, Banks WA, Beckman BS, Zadina JE. The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci Biobehav Rev. 1994;18:143–59.

    CAS  PubMed  Google Scholar 

  96. • Park S, Kim BN, Kim JW, Shin MS, Cho SC, Kim JH, et al. Neurotrophin 3 genotype and emotional adverse effects of osmotic-release oral system methylphenidate (OROS-MPH) in children with attention-deficit/hyperactivity disorder. J Psychopharmacol. 2014;28:220–6 This study provided evidence that genetic variation of the NTF3 gene was related to susceptibility of emotional side effects in response to treatment with methylphenidate.

    PubMed  Google Scholar 

  97. Bilgiç A, Toker A, Işık Ü, Kılınç İ. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry. 2017;26(3):355–63. https://doi.org/10.1007/s00787-016-0898-2.

    Article  PubMed  Google Scholar 

  98. Oades RD. Role of the serotonin system in ADHD: treatment implications. Expert Rev Neurother. 2007;7(10):1357–74.

    CAS  PubMed  Google Scholar 

  99. Oades RD. Dopamine–serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res. 2008;172:543–65.

    CAS  PubMed  Google Scholar 

  100. Ludolph AG, Kassubek J, Schmeck K, Glaser C, Wunderlich A, Buck AK, et al. Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: a 3,4-dihdroxy-6 [18F]fluorophenyl-l-alanine PET study. Neuroimage. 2008;41(3):718–27.

    PubMed  Google Scholar 

  101. Seo D, Patrick CJ, Kennealy PJ. Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav. 2008;13(5):383–95.

    PubMed  PubMed Central  Google Scholar 

  102. Nordquist N, Creland L. Serotonin, genetic variability, behavioral, and psychiatric disorders-a review. Ups J Med Sci. 2010;115(1):2–10.

    PubMed  PubMed Central  Google Scholar 

  103. Arnsten AF. Catecholamine influences on dorsolateral prefrontal cortical networks. Biol Psychiatry. 2011;69(12):89–99.

    Google Scholar 

  104. Volkow ND, Wang GJ, Kollins SH, Wigal TL, Newcorn JH, Telang F, et al. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA. 2009;302(10):1084–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Volkow ND, Wang GJ, Newcorn J, Telang F, Solanto MV, Fowler JS, et al. Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention deficit/hyperactivity disorder. Arch Gen Psychiatry. 2007;64(8):932–40.

    CAS  PubMed  Google Scholar 

  106. Pliska SR, McCracken JT, Maas JW. Catecholamines in attention-deficit hyperactivity disorder: current perspective. J Am Acad Child Adolesc Psychiatry. 1996;35:264–72.

    Google Scholar 

  107. Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM. Dopa decarboxilase activity in attention deficit hyperactivity disorders adults. A [fluorine-18] flouradopa positron emission tomography study. J Neurosci. 1998;18(15):5901–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zametkin AJ, Ernst M. Current concepts: problems in the management and treatment of attention deficit hyperactivity disorder. N Engl J Med. 1999;340(1):40–8.

    CAS  PubMed  Google Scholar 

  109. Courvoisie H. Neurometabolic functioning and neuropsychological correlates in children with ADHD-H: preliminary findings. J Neuropsychiatr Clin Neurosci. 2004;16:63–9.

    CAS  Google Scholar 

  110. Hoshino Y, Ohno Y, Yamamoto T, Kaneko M, Kumashiro H. Plasma free tryptophan concentration in children with attention deficit disorder. Folia Psychiatr Neurol Jpn. 1985;39(4):531–5.

    CAS  PubMed  Google Scholar 

  111. •• Dolina S, Margalit D, Malitsky S, Rabinkov A. Attention-deficit hyperactivity disorder (ADHD) as a pyridoxine-dependent condition: urinary diagnostic biomarkers. Med Hypotheses. 2014;82(1):111–6. https://doi.org/10.1016/j.mehy.2013.11.018This study reported ratios of levels of certain enzymes to be biomarkers of ADHD and reported low concentrations of monoamines and disordered amino acid metabolism to be an inherent cause of ADHD.

    Article  CAS  PubMed  Google Scholar 

  112. Anand D, Colpo GD, Zeni G, Zeni CP, Teixeira AL. Attention- deficit/hyperactivity disorder and inflammation: What does current knowledge tell us? A systematic review. Front Psychiatry. 2017;8:228.

    PubMed  PubMed Central  Google Scholar 

  113. Oades RD, Dauvermann MR, Schimmelmann BG, Schwarz MJ, Myint AM. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism effects of medication. Behav Brain Funct. 2010;6:29.

    PubMed  PubMed Central  Google Scholar 

  114. Oades RD, Myint AM, Dauvermann MR, Schimmelmann BG, Schwarz MJ. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: an exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav Brain Funct. 2010;6:32.

    PubMed  PubMed Central  Google Scholar 

  115. Avcil S. Evaluation of the neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and mean platelet volume as inflammatory markers in children with attention-deficit hyperactivity disorder. Psychiatry Clin Neurosci. 2018;72(7):522–30. https://doi.org/10.1111/pcn.12659.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejas Mehta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on ADHD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, T., Mannem, N., Yarasi, N.K. et al. Biomarkers for ADHD: the Present and Future Directions. Curr Dev Disord Rep 7, 85–92 (2020). https://doi.org/10.1007/s40474-020-00196-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-020-00196-9

Keywords

Navigation