Skip to main content
Log in

Neurophysiological Approaches to Understanding Motor Control in DCD: Current Trends and Future Directions

  • Motor Disorders (P Wilson, Section Editor)
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To provide an account of neurophysiological approaches to understanding motor control in DCD, with a specific focus on emerging techniques such as non-invasive brain stimulation (NIBS) and fNIRS. We also provide an update on evidence from more traditional neurophysiological approaches to understanding atypical motor skills such as EEG.

Recent Findings

With reference to NIBS data from DCD and congenital motor disorders, we present evidence that compromised excitatory and inhibitory neurophysiology within motor circuitry may provide a biomarker for atypical motor development. Further, we draw parallels between work reviewed here and neuroimaging evidence reviewed elsewhere, highlighting converging lines of evidence implicating motor and executive systems in DCD.

Summary

Neurophysiological approaches to understanding DCD have the potential to play an important role in clarifying its underlying mechanisms. Given promising findings emerging from other pediatric motor disorders, we argue that continued work into the viability of NIBS in diagnosis and treatment of DCD is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Association, A.P. Diagnostic and statistical manual of mental disorders (DSM-5®). 2013. American Psychiatric Pub.

  2. Biotteau M, Chaix Y, Blais M, Tallet J, Péran P, Albaret JM. Neural signature of DCD: a critical review of MRI neuroimaging studies. Front Neurol. 2016;7.

  3. Brown-Lum M, Zwicker JG. Brain imaging increases our understanding of developmental coordination disorder: a review of literature and future directions. Curr Dev Disord Rep. 2015;2(2):131–40.

    Article  Google Scholar 

  4. Fuelscher I, Caeyenberghs K, Enticott PG, Williams J, Lum J, Hyde C. Differential activation of brain areas in children with developmental coordination disorder during tasks of manual dexterity: an ALE meta-analysis. Neurosci Biobehav Rev. 2018;86:77–84.

    Article  CAS  Google Scholar 

  5. Gomez A, Sirigu A. Developmental coordination disorder: core sensori-motor deficits, neurobiology and etiology. Neuropsychologia. 2015;79(Pt B):272–87.

    Article  Google Scholar 

  6. Reynolds JE, Thornton AL, Elliott C, Williams J, Lay BS, Licari MK. A systematic review of mirror neuron system function in developmental coordination disorder: imitation, motor imagery, and neuroimaging evidence. Res Dev Disabil. 2015;47:234–83.

    Article  Google Scholar 

  7. Wilson PH, Smits-Engelsman B, Caeyenberghs K, Steenbergen B, Sugden D, Clark J, et al. Cognitive and neuroimaging findings in developmental coordination disorder: new insights from a systematic review of recent research. Dev Med Child Neurol. 2017;59:1117–29.

    Article  Google Scholar 

  8. Allen CH, Kluger BM, Buard I. Safety of transcranial magnetic stimulation in children: a systematic review of the literature. Pediatr Neurol. 2017;68:3–17.

    Article  Google Scholar 

  9. Liew S-L, et al. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci. 2014;8:378.

    Article  Google Scholar 

  10. Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2016;63:43–64.

    Article  Google Scholar 

  11. Ilić TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U. Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol. 2002;545(1):153–67.

    Article  Google Scholar 

  12. Beck S, Hallett M. Surround inhibition in the motor system. Exp Brain Res. 2011;210(2):165–72.

    Article  Google Scholar 

  13. Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017;21(1):23–48.

    Article  Google Scholar 

  14. Garvey MA, Mall V. Transcranial magnetic stimulation in children. Clin Neurophysiol. 2008;119(5):973–84.

    Article  Google Scholar 

  15. Williams J, Hyde C, Spittle A. Developmental coordination disorder and cerebral palsy: is there a continuum? Curr Dev Disord Rep. 2014;1(2):118–24.

    Article  Google Scholar 

  16. Pearsall-Jones JG, Piek JP, Levy F. Developmental coordination disorder and cerebral palsy: categories or a continuum? Hum Mov Sci. 2010;29(5):787–98.

    Article  Google Scholar 

  17. Kuo HC, Friel KM, Gordon AM. Neurophysiological mechanisms and functional impact of mirror movements in children with unilateral spastic cerebral palsy. Dev Med Child Neurol. 2018;60(2):155–61.

    Article  Google Scholar 

  18. Stinear CM, Coxon JP, Byblow WD. Primary motor cortex and movement prevention: where stop meets go. Neurosci Biobehav Rev. 2009;33(5):662–73.

    Article  Google Scholar 

  19. Kuo HC, Ferre CL, Carmel JB, Gowatsky JL, Stanford AD, Rowny SB, et al. Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy. Dev Med Child Neurol. 2017;59(1):65–71.

    Article  Google Scholar 

  20. Carr L, et al. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116(5):1223–47.

    Article  Google Scholar 

  21. Beaulé V, Tremblay S, Théoret H. Interhemispheric control of unilateral movement. Neural Plast. 2012;2012:1–11.

    Article  Google Scholar 

  22. Swinnen S, Young DE, Walter CB, Serrien DJ. Control of asymmetrical bimanual movements. Exp Brain Res. 1991;85(1):163–73.

    Article  CAS  Google Scholar 

  23. Li JY, Espay AJ, Gunraj CA, Pal PK, Cunic DI, Lang AE, et al. Interhemispheric and ipsilateral connections in Parkinson’s disease: relation to mirror movements. Mov Disord. 2007;22(6):813–21.

    Article  Google Scholar 

  24. Nadkarni NA, Deshmukh SS. Mirror movements. Ann Indian Acad Neurol. 2012;15(1):13–4.

    Article  Google Scholar 

  25. • He JL, Fuelscher I, Enticott PG, Teo WP, Barhoun P, Hyde C. Interhemispheric cortical inhibition is reduced in young adults with developmental coordination disorder. Front Neurol. 2018;9:179. The first study to employ paired-pulse TMS in DCD; this study demonstrated that young adults with DCD show reduced interhemispheric M1 cortical inhibition.

    Article  Google Scholar 

  26. Koerte I, et al. Anisotropy of transcallosal motor fibres indicates functional impairment in children with periventricular leukomalacia. Dev Med Child Neurol. 2011;53(2):179–86.

    Article  Google Scholar 

  27. Bruininks RH. Bruininks-Oseretsky test of motor proficiency, (BOT-2). Minneapolis, MN: Pearson Assessment; 2005.

    Google Scholar 

  28. Blais M, Baly C, Biotteau M, Albaret JM, Chaix Y, Tallet J. Lack of motor inhibition as a marker of learning difficulties of bimanual coordination in teenagers with developmental coordination disorder. Dev Neuropsychol. 2017;42(3):207–19.

    Article  Google Scholar 

  29. • Blais M, Amarantini D, Albaret JM, Chaix Y, Tallet J. Atypical inter-hemispheric communication correlates with altered motor inhibition during learning of a new bimanual coordination pattern in developmental coordination disorder. Dev Sci. 2018;21(3):e12563. Using EEG, this study demonstrated that increased mirror movements in DCD were assocaited with lower cortico-cortical coherence between fronto-central regions.

    Article  Google Scholar 

  30. Licari M, Larkin D, Miyahara M. The influence of developmental coordination disorder and attention deficits on associated movements in children. Hum Mov Sci. 2006;25(1):90–9.

    Article  Google Scholar 

  31. Stinear, C.M. Corticospinal facilitation during motor imagery. In: The neurophysiological foundations of mental and motor imagery. 2010. p. 47–61.

  32. Jeannerod M. Motor cognition: what actions tell the self. Oxford: Oxford University Press; 2006.

    Book  Google Scholar 

  33. Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev. 2018;94:31–44.

    Article  Google Scholar 

  34. Hetu S, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930–49.

    Article  Google Scholar 

  35. Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke. 2006;37(7):1941–52.

    Article  Google Scholar 

  36. Grospretre S, Ruffino C, Lebon F. Motor imagery and cortico-spinal excitability: a review. Eur J Sport Sci. 2016;16(3):317–24.

    Article  Google Scholar 

  37. Lebon F, Byblow WD, Collet C, Guillot A, Stinear CM. The modulation of motor cortex excitability during motor imagery depends on imagery quality. Eur J Neurosci. 2012;35(2):323–31.

    Article  Google Scholar 

  38. Williams J, Pearce AJ, Loporto M, Morris T, Holmes PS. The relationship between corticospinal excitability during motor imagery and motor imagery ability. Behav Brain Res. 2012;226(2):369–75.

    Article  Google Scholar 

  39. Craje C, et al. Compromised motor planning and motor imagery in right hemiparetic cerebral palsy. Res Dev Disabil. 2010;31(6):1313–22.

    Article  Google Scholar 

  40. Lust JM, Wilson PH, Steenbergen B. Motor imagery difficulties in children with cerebral palsy: a specific or general deficit? Res Dev Disabil. 2016;57:102–11.

    Article  Google Scholar 

  41. Mutsaarts M, Steenbergen B, Bekkering H. Impaired motor imagery in right hemiparetic cerebral palsy. Neuropsychologia. 2007;45(4):853–9.

    Article  Google Scholar 

  42. Adams IL, et al. Compromised motor control in children with DCD: a deficit in the internal model?-a systematic review. Neurosci Biobehav Rev. 2014;47:225–44.

    Article  Google Scholar 

  43. Barhoun P, Fuelscher I, Kothe EJ, He JL, Youssef GJ, Enticott PG, et al. Motor imagery in children with DCD: a systematic and meta-analytic review of hand-rotation task performance. Neurosci Biobehav Rev. 2019;99:282–97.

    Article  Google Scholar 

  44. Wilson PH, Thomas PR, Maruff P. Motor imagery training ameliorates motor clumsiness in children. J Child Neurol. 2002;17(7):491–8.

    Article  Google Scholar 

  45. Wilson PH, Adams ILJ, Caeyenberghs K, Thomas P, Smits-Engelsman B, Steenbergen B. Motor imagery training enhances motor skill in children with DCD: a replication study. Res Dev Disabil. 2016;57:54–62.

    Article  Google Scholar 

  46. Hyde C, Fuelscher I, Williams J, Lum JAG, He J, Barhoun P, et al. Corticospinal excitability during motor imagery is reduced in young adults with developmental coordination disorder. Res Dev Disabil. 2018;72:214–24.

    Article  CAS  Google Scholar 

  47. Pitcher JB, Schneider LA, Burns NR, Drysdale JL, Higgins RD, Ridding MC, et al. Reduced corticomotor excitability and motor skills development in children born preterm. J Physiol. 2012;590(22):5827–44.

    Article  CAS  Google Scholar 

  48. Goulardins JB, Rigoli D, Licari M, Piek JP, Hasue RH, Oosterlaan J, et al. Attention deficit hyperactivity disorder and developmental coordination disorder: two separate disorders or do they share a common etiology. Behav Brain Res. 2015;292:484–92.

    Article  Google Scholar 

  49. Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, di Lazzaro V, et al. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016;9(3):323–35.

    Article  CAS  Google Scholar 

  50. Gillick B, et al. Therapeutic brain stimulation trials in children with cerebral palsy, in Pediatric brain stimulation. Elsevier; 2016. p. 209–236.

  51. Saleem GT, et al. Transcranial direct current stimulation in pediatric motor disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018.

  52. Gillick BT, Gordon AM, Feyma T, Krach LE, Carmel J, Rich TL, et al. Non-invasive brain stimulation in children with unilateral cerebral palsy: a protocol and risk mitigation guide. Front Pediatr. 2018;6:56.

    Article  Google Scholar 

  53. Barahona-Corrêa JB, Velosa A, Chainho A, Lopes R, Oliveira-Maia AJ. Repetitive transcranial magnetic stimulation for treatment of autism spectrum disorder: a systematic review and meta-analysis. Front Integr Neurosci. 2018;12:27.

    Article  Google Scholar 

  54. Rubio B, Boes AD, Laganiere S, Rotenberg A, Jeurissen D, Pascual-Leone A. Noninvasive brain stimulation in pediatric attention-deficit hyperactivity disorder (ADHD) a review. J Child Neurol. 2016;31(6):784–96.

    Article  Google Scholar 

  55. Ciechanski P, Zewdie E, Kirton A. Developmental profile of motor cortex transcallosal inhibition in children and adolescents. J Neurophysiol. 2017;118(1):140–8.

    Article  Google Scholar 

  56. Cui X, Bray S, Bryant DM, Glover GH, Reiss AL. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage. 2011;54(4):2808–21.

    Article  Google Scholar 

  57. Pinti P, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences; 2018.

  58. • Caçola P, Getchell N, Srinivasan D, Alexandrakis G, Liu H. Cortical activity in fine-motor tasks in children with developmental coordination disorder: a preliminary fNIRS study. Int J Dev Neurosci. 2018;65:83–90. This was the first study to demonstrate the viability of f NIRS as a measrue of functional neural activity in DCD.

    Article  Google Scholar 

  59. Koch JKL, Miguel H, Smiley-Oyen AL. Prefrontal activation during Stroop and Wisconsin card sort tasks in children with developmental coordination disorder: a NIRS study. Exp Brain Res. 2018;1–12.

  60. Querne L, Berquin P, Vernier-Hauvette MP, Fall S, Deltour L, Meyer ME, et al. Dysfunction of the attentional brain network in children with developmental coordination disorder: a fMRI study. Brain Res. 2008;1244:89–102.

    Article  CAS  Google Scholar 

  61. Pangelinan MM, Hatfield BD, Clark JE. Differences in movement-related cortical activation patterns underlying motor performance in children with and without developmental coordination disorder. J Neurophysiol. 2013;109(12):3041–50.

    Article  Google Scholar 

  62. Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H. Illuminating the BOLD signal: combined fMRI–fNIRS studies. Magn Reson Imaging. 2006;24(4):495–505.

    Article  Google Scholar 

  63. Balardin JB, Zimeo Morais GA, Furucho RA, Trambaiolli L, Vanzella P, Biazoli C, et al. Imaging brain function with functional near-infrared spectroscopy in unconstrained environments. Front Hum Neurosci. 2017;11:258.

    Article  Google Scholar 

  64. Zwicker JG, Suto M, Harris SR, Vlasakova N, Missiuna C. Developmental coordination disorder is more than a motor problem: children describe the impact of daily struggles on their quality of life. Br J Occup Ther. 2018;81(2):65–73.

    Article  Google Scholar 

  65. Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci. 2017;40(4):208–18.

    Article  CAS  Google Scholar 

  66. Tsai C-L, Pan CY, Chang YK, Wang CH, Tseng KD. Deficits of visuospatial attention with reflexive orienting induced by eye-gazed cues in children with developmental coordination disorder in the lower extremities: an event-related potential study. Res Dev Disabil. 2010;31(3):642–55.

    Article  Google Scholar 

  67. Tsai C-L, Pan CY, Cherng RJ, Hsu YW, Chiu HH. Mechanisms of deficit of visuospatial attention shift in children with developmental coordination disorder: a neurophysiological measure of the endogenous Posner paradigm. Brain Cogn. 2009;71(3):246–58.

    Article  Google Scholar 

  68. Tsai C-L, Wang C-H, Tseng Y-T. Effects of exercise intervention on event-related potential and task performance indices of attention networks in children with developmental coordination disorder. Brain Cogn. 2012;79(1):12–22.

    Article  Google Scholar 

  69. Tsai C-L, Chang YK, Hung TM, Tseng YT, Chen TC. The neurophysiological performance of visuospatial working memory in children with developmental coordination disorder. Dev Med Child Neurol. 2012;54(12):1114–20.

  70. Wang CH, Lo YH, Pan CY, Chen FC, Liang WK, Tsai CL. Frontal midline theta as a neurophysiological correlate for deficits of attentional orienting in children with developmental coordination disorder. Psychophysiology. 2015;52(6):801–12.

    Article  Google Scholar 

  71. Wang CH, Tseng YT, Liu D, Tsai CL. Neural oscillation reveals deficits in visuospatial working memory in children with developmental coordination disorder. Child Dev. 2017;88(5):1716–26.

    Article  Google Scholar 

  72. Holeckova I, Cepicka L, Mautner P, Stepanek D, Moucek R. Auditory ERPs in children with developmental coordination disorder. Act Nerv Super. 2014;56(1–2):37–44.

    Article  Google Scholar 

  73. de Castelnau P, Albaret JM, Chaix Y, Zanone PG. A study of EEG coherence in DCD children during motor synchronization task. Hum Mov Sci. 2008;27(2):230–41.

    Article  Google Scholar 

  74. Bosl WJ, Tager-Flusberg H, Nelson CA. EEG analytics for early detection of autism spectrum disorder: a data-driven approach. Sci Rep. 2018;8(1):6828.

    Article  Google Scholar 

  75. Grossi E, Olivieri C, Buscema M. Diagnosis of autism through EEG processed by advanced computational algorithms: a pilot study. Comput Methods Prog Biomed. 2017;142:73–9.

    Article  Google Scholar 

  76. Reynolds JE, Licari MK, Reid SL, Elliott C, Winsor AM, Bynevelt M, et al. Reduced relative volume in motor and attention regions in developmental coordination disorder: a voxel-based morphometry study. Int J Dev Neurosci. 2017;58:59–64.

    Article  Google Scholar 

  77. Williams J, Kashuk SR, Wilson PH, Thorpe G, Egan GF. White matter alterations in adults with probable developmental coordination disorder: an MRI diffusion tensor imaging study. Neuroreport. 2017;28(2):87–92.

    Article  Google Scholar 

  78. Geeraert B, Reynolds J, Lebel C. Diffusion imaging perspectives on brain development in childhood and adolescence.

  79. Cermak S, et al. Participation in physical activity, fitness, and risk for obesity in children with developmental coordination disorder: a cross-cultural study. Occup Ther Int. 2015;22(4):163–73.

    Article  CAS  Google Scholar 

  80. Leonard HC, Hill EL. Executive difficulties in developmental coordination disorder: methodological issues and future directions. Curr Dev Disord Rep. 2015;2(2):141–9.

    Article  Google Scholar 

  81. Leonard HC, Bernardi M, Hill EL, Henry LA. Executive functioning, motor difficulties, and developmental coordination disorder. Dev Neuropsychol. 2015;40(4):201–15.

    Article  Google Scholar 

  82. Langevin LM, MacMaster FP, Crawford S, Lebel C, Dewey D. Common white matter microstructure alterations in pediatric motor and attention disorders. J Pediatr. 2014;164(5):1157–1164 e1.

    Article  Google Scholar 

  83. Hyde C, et al. White matter organization in developmental coordination disorder: a pilot study exploring the added value of constrained spherical deconvolution. NeuroImage: Clin. 2018;21:101625.

  84. Forkel SJ, Thiebaut de Schotten M, Kawadler JM, Dell'Acqua F, Danek A, Catani M. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex. 2014;56:73–84.

    Article  Google Scholar 

  85. Parlatini V, Radua J, Dell’Acqua F, Leslie A, Simmons A, Murphy DG, et al. Functional segregation and integration within fronto-parietal networks. Neuroimage. 2017;146:367–75.

    Article  Google Scholar 

  86. de Kieviet JF, Pouwels PJW, Lafeber HN, Vermeulen RJ, van Elburg RM, Oosterlaan J. A crucial role of altered fractional anisotropy in motor problems of very preterm children. Eur J Paediatr Neurol. 2014;18(2):126–33.

    Article  Google Scholar 

  87. McLeod KR, Langevin LM, Goodyear BG, Dewey D. Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. NeuroImage: Clin. 2014;4:566–75.

    Article  Google Scholar 

  88. Cantin N, Polatajko HJ, Thach WT, Jaglal S. Developmental coordination disorder: exploration of a cerebellar hypothesis. Hum Mov Sci. 2007;26(3):491–509.

    Article  Google Scholar 

  89. Casula EP, Pellicciari MC, Ponzo V, Stampanoni Bassi M, Veniero D, Caltagirone C, et al. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci Rep. 2016;6:36191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hyde.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Motor Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyde, C., Fuelscher, I. & Williams, J. Neurophysiological Approaches to Understanding Motor Control in DCD: Current Trends and Future Directions. Curr Dev Disord Rep 6, 78–86 (2019). https://doi.org/10.1007/s40474-019-00161-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-019-00161-1

Keywords

Navigation