Skip to main content

Dietary and Micronutrient Treatments for Children with Neurodevelopment Disorders


Purpose of Review

There is an increased use of dietary and nutritional treatments among families of children with attention-deficit/hyperactivity disorder, autism spectrum disorder, and other neurodevelopmental disorders. With unclear and sometimes contradictory information regarding the effectiveness and safety of such treatments, this review critically reviews available research.

Recent Findings

This review identified treatments with promising and increasing levels of evidence including the few foods diet, PUFAs, probiotic treatments, and broad spectrum micronutrients; treatments with inconclusive or inconsistent findings such as gluten-free or additive-free diets, and those treatments with little evidence for effectiveness such as a sugar-free diet.


There is reasonably robust evidence for the use of some dietary and nutritional approaches such as reduction of food dyes and supplementing with essential fatty acids and broad spectrum micronutrients. Additionally, the literature reviewed provided theoretical mechanisms for these treatments. Many methodological challenges (such as sample size, length of intervention, and difficulties with researcher blinding) were reviewed, demonstrating the need for a well-designed, well-controlled replications studies to provide further guidance and reassurance to families and health professionals.

This is a preview of subscription content, access via your institution.


  1. 1.

    Scahill L, Schwab-Stone M. Epidemiology of ADHD in school-age children. Child Adolesc Psychiatr Clin N Am. 2000;9(3):541–55 vii.

    CAS  PubMed  Google Scholar 

  2. 2.

    Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jensen PS, Hinshaw SP, Swanson JM, Greenhill LL, Conners CK, Arnold LE, et al. Findings from the NIMH multimodal treatment study of ADHD (MTA): implications and applications for primary care providers. J Dev Behav Pediatr. 2001;22(1):60–73.

    CAS  PubMed  Google Scholar 

  4. 4.

    Marí-Bauset S, Zazpe I, Mari-Sanchis A, Llopis-González A, Morales-Suárez-Varela M. Evidence of the gluten-free and casein-free diet in autism spectrum disorders. J Child Neurol. 2014;29(12):1718–27.

    PubMed  Google Scholar 

  5. 5.

    Chan E, Leonard Rappaport MA, Kemper KJ. Complementary and alternative therapies in childhood attention and hyperactivity problems. Dev Behav Pediatr. 2003;24(1).

    Google Scholar 

  6. 6.

    Hanson E, Kalish LA, Bunce E, Curtis C, McDaniel S, Ware J, et al. Use of complementary and alternative medicine among children diagnosed with autism spectrum disorder. J Autism Dev Disord. 2007;37(4):628–36.

    PubMed  Google Scholar 

  7. 7.

    Weiss B. Synthetic food colors and neurobehavioral hazards: the view from environmental health research. Environ Health Perspect. 2011;120(1):1–5.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Niederhofer H, Pittschieler K. A preliminary investigation of ADHD symptoms in persons with celiac disease. J Atten Disord. 2006;10(2):200–4.

    PubMed  Google Scholar 

  9. 9.

    Nigg JT, Holton K. Restriction and elimination diets in ADHD treatment. Child Adolesc Psychiatr Clin N Am. 2014;23(4):937–53.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ly V, Bottelier M, Hoekstra PJ, Arias Vasquez A, Buitelaar JK, Rommelse NN. Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry. 2017;26(9):1067–79.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    de Theije CGM, Bavelaar BM, Lopes da Silva S, Korte SM, Olivier B, Garssen J, et al. Food allergy and food-based therapies in neurodevelopmental disorders. Pediatr Allergy Immunol. 2014;25(3):218–26.

    PubMed  Google Scholar 

  12. 12.

    Ertürk E, Wouters S, Imeraj L, Lampo A. Association of ADHD and celiac disease. J Atten Disord. 2016;29:108705471561149.

    Google Scholar 

  13. 13.

    Pelsser LM, Frankena K, Toorman J, R Rodrigues Pereira. Diet and ADHD, reviewing the evidence: a systematic review of meta-analyses of double-blind placebo-controlled trials evaluating the efficacy of diet interventions on the behavior of children with ADHD. Hashimoto K, editor. PLoS One. 2017;12(1):e0169277.

  14. 14.

    Buie T. The relationship of autism and gluten. Clin Ther. 2013 May;35(5):578–83.

    CAS  PubMed  Google Scholar 

  15. 15.

    McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014;133(5):872–83.

    PubMed  Google Scholar 

  16. 16.

    Elder JH, Shankar M, Shuster J, Theriaque D, Burns S, Sherrill L. The gluten-free, casein-free diet in autism: results of a preliminary double blind clinical trial. J Autism Dev Disord. 2006;36(3):413–20.

    PubMed  Google Scholar 

  17. 17.

    Ghalichi F, Ghaemmaghami J, Malek A, Ostadrahimi A. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J Pediatr. 2016;12(4):436–42.

    CAS  PubMed  Google Scholar 

  18. 18.

    Hyman SL, Stewart PA, Foley J, Cain U, Peck R, Morris DD, et al. The gluten-free/casein-free diet: a double-blind challenge trial in children with autism. J Autism Dev Disord. 2016;46(1):205–20.

    PubMed  Google Scholar 

  19. 19.

    Johnson CR, Handen BL, Zimmer M, Sacco K, Turner K. Effects of gluten free/casein free diet in young children with autism: a pilot study. J Dev Phys Disabil. 2011;23(3):213–25.

    Google Scholar 

  20. 20.

    Knivsberg AM, Reichelt KL, HØien T, NØdland M. A randomised, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci. 2002;5(4):251–61.

    CAS  PubMed  Google Scholar 

  21. 21.

    Whiteley P, Haracopos D, Knivsberg A-M, Reichelt KL, Parlar S, Jacobsen J, et al. The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr Neurosci. 2010;13(2):87–100.

    CAS  PubMed  Google Scholar 

  22. 22.

    Jyonouchi H, Geng L, Ruby A, Zimmerman-Bier B. Dysregulated innate immune responses in young children with autism spectrum disorders: their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology. 2005;51(2):77–85.

    PubMed  Google Scholar 

  23. 23.

    Lange KW, Hauser J, Reissmann A. Gluten-free and casein-free diets in the therapy of autism. Curr Opin Clin Nutr Metab Care. 2015;18(6):572–5.

    CAS  PubMed  Google Scholar 

  24. 24.

    Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012;3:59.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hallböök T, Köhler S, Rosén I, Lundgren J. Effects of ketogenic diet on epileptiform activity in children with therapy resistant epilepsy. Epilepsy Res. 2007;77(2–3):134–40.

    PubMed  Google Scholar 

  26. 26.

    El-Rashidy O, El-Baz F, El-Gendy Y, Khalaf R, Reda D, Saad K. Ketogenic diet versus gluten free casein free diet in autistic children: a case-control study. Metab Brain Dis. 2017;32(6):1935–41.

    CAS  PubMed  Google Scholar 

  27. 27.

    Feingold BF. Hyperkinesis and learning disabilities linked to artificial food flavors and colors. Am J Nurs. 1975;75(5):797–803.

    CAS  PubMed  Google Scholar 

  28. 28.

    Stevenson J, Buitelaar J, Cortese S, Ferrin M, Konofal E, Lecendreux M, et al. Research review: the role of diet in the treatment of attention-deficit/hyperactivity disorder - an appraisal of the evidence on efficacy and recommendations on the design of future studies. J Child Psychol Psychiatry. 2014;55(5):416–27.

    PubMed  Google Scholar 

  29. 29.

    Kanarek RB. Artificial food dyes and attention deficit hyperactivity disorder. Nutr Rev. 2011;69(7):385–91.

    PubMed  Google Scholar 

  30. 30.

    Heilskov Rytter MJ, Andersen LBB, Houmann T, Bilenberg N, Hvolby A, Mølgaard C, et al. Diet in the treatment of ADHD in children—a systematic review of the literature. Nord J Psychiatry. 2015;69(1):1–18.

    PubMed  Google Scholar 

  31. 31.

    Johnson RJ, Gold MS, Johnson DR, Ishimoto T, Lanaspa MA, Zahniser NR, et al. Attention-deficit/hyperactivity disorder: is it time to reappraise the role of sugar consumption? Postgrad Med. 2011;123(5):39–49.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wolraich ML, Wilson DB, White JW. The effect of sugar on behavior or cognition in children. JAMA. 1995;274(20):1617.

    CAS  PubMed  Google Scholar 

  33. 33.

    Hak E, de Vries TW, Hoekstra PJ, Jick SS. Association of childhood attention-deficit/hyperactivity disorder with atopic diseases and skin infections? A matched case-control study using the General Practice Research Database. Ann Allergy Asthma Immunol. 2013;111(2):102–106.e2.

    PubMed  Google Scholar 

  34. 34.

    Millichap JG, Yee MM. The diet factor in attention-deficit/hyperactivity disorder. Pediatrics. 2012;129(2):330–7.

    PubMed  Google Scholar 

  35. 35.

    Nigg JT, Lewis K, Edinger T, Falk M. Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. J Am Acad Child Adolesc Psychiatry. 2012;51(1):86–97.e8.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Sonuga-Barke EJS, Brandeis D, Cortese S, Daley D, Ferrin M, Holtmann M, et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am J Psychiatry. 2013;170(3):275–89.

    PubMed  Google Scholar 

  37. 37.

    Catalá-López F, Hutton B, Núñez-Beltrán A, Page MJ, Ridao M, Macías Saint-Gerons D, et al. The pharmacological and non-pharmacological treatment of attention deficit hyperactivity disorder in children and adolescents: a systematic review with network meta-analyses of randomised trials. Gluud C, editor. PLoS One. 2017;12(7):e0180355.

  38. 38.

    Ludlow AK, Rogers SL. Understanding the impact of diet and nutrition on symptoms of Tourette syndrome: a scoping review. J Child Heal Care. 2018;22(1):68–83.

    Google Scholar 

  39. 39.

    Müller-Vahl KR, Buddensiek N, Geomelas M, Emrich HM. The influence of different food and drink on tics in Tourette syndrome. Acta Paediatr. 2008 Apr;97(4):442–6.

    PubMed  Google Scholar 

  40. 40.

    Mitchell EA, Aman MG, Turbott SH, Manku M. Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin Pediatr (Phila). 1987;26(8):406–11.

    CAS  Google Scholar 

  41. 41.

    Colter AL, Cutler C, Meckling KA. Fatty acid status and behavioural symptoms of attention deficit hyperactivity disorder in adolescents: a case-control study. Nutr J. 2008;7:8.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Agostoni C, Nobile M, Ciappolino V, Delvecchio G, Tesei A, Turolo S, et al. The role of omega-3 fatty acids in developmental psychopathology: a systematic review on early psychosis, autism, and ADHD. Int J Mol Sci. 2017;18(12).

    PubMed Central  Google Scholar 

  43. 43.

    Richardson AJ, Montgomery P. The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics. 2005;115(5):1360–6.

    PubMed  Google Scholar 

  44. 44.

    Sinn N, Bryan J. Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD. J Dev Behav Pediatr. 2007;28(2):82–91.

    PubMed  Google Scholar 

  45. 45.

    Manor I, Magen A, Keidar D, Rosen S, Tasker H, Cohen T, et al. The effect of phosphatidylserine containing omega3 fatty-acids on attention-deficit hyperactivity disorder symptoms in children: a double-blind placebo-controlled trial, followed by an open-label extension. Eur Psychiatry. 2012;27(5):335–42.

    CAS  PubMed  Google Scholar 

  46. 46.

    Hariri M, Djazayery A, Djalali M, Saedisomeolia A, Rahimi A, Abdolahian E. Effect of n-3 supplementation on hyperactivity, oxidative stress and inflammatory mediators in children with attention-deficit-hyperactivity disorder. Malays J Nutr. 2012;18(3):329–35.

    CAS  PubMed  Google Scholar 

  47. 47.

    Johnson M, Östlund S, Fransson G, Kadesjö B, Gillberg C. Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder. J Atten Disord. 2009;12(5):394–401.

    PubMed  Google Scholar 

  48. 48.

    Matsudaira T, Gow RV, Kelly J, Murphy C, Potts L, Sumich A, et al. Biochemical and psychological effects of omega-3/6 supplements in male adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, clinical trial. J Child Adolesc Psychopharmacol. 2015;25(10):775–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bloch MH, Qawasmi A. Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2011;50(10):991–1000.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ibarguren M, López DJ. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim Biophys Acta Biomembr. 2014;1838(6):1518–28.

    CAS  Google Scholar 

  51. 51.

    Mostafa GA, Al-Ayadhi LY. The possible link between elevated serum levels of epithelial cell-derived neutrophil-activating peptide-78 (ENA-78/CXCL5) and autoimmunity in autistic children. Behav Brain Funct. 2015;11:11.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Parletta N, Niyonsenga T, Duff J. Omega-3 and omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. Lakshmana MK, editor. PLoS One. 2016;11(5):e0156432.

  53. 53.

    MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boon F, et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res. 2007;176(1):149–69.

    CAS  PubMed  Google Scholar 

  54. 54.

    El-Ansary AK, Al-Daihan SK, El-Gezeery AR. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups. Lipids Health Dis. 2011;10:142.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    El-Ansary AK, Ben Bacha A, Kotb M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation. 2012;9:74.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Thomas RH, Meeking MM, Mepham JR, Tichenoff L, Possmayer F, Liu S, et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation. 2012;9(1):695.

    Google Scholar 

  57. 57.

    Bell JG, MacKinlay EE, Dick JR, MacDonald DJ, Boyle RM, Glen ACA. Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot Essent Fat Acids. 2004;71(4):201–4.

    CAS  Google Scholar 

  58. 58.

    Meguid NA, Atta HM, Gouda AS, Khalil RO. Role of polyunsaturated fatty acids in the management of Egyptian children with autism. Clin Biochem. 2008;41(13):1044–8.

    CAS  PubMed  Google Scholar 

  59. 59.

    Patrick L, Salik R. Benefits of essential fatty acid supplementation on language and learning skills in children with autism and Asperger’s syndrome. Autism-Asperger’s Digest. 2005;36–7.

  60. 60.

    Amminger GP, Berger GE, Schäfer MR, Klier C, Friedrich MH, Feucht M. Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol Psychiatry. 2007;61(4):551–3.

    CAS  PubMed  Google Scholar 

  61. 61.

    Bent S, Bertoglio K, Ashwood P, Bostrom A, Hendren RL. A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. J Autism Dev Disord. 2011 May;41(5):545–54.

    PubMed  Google Scholar 

  62. 62.

    Bent S, Hendren RL, Zandi T, Law K, Choi J-E, Widjaja F, et al. Internet-based, randomized, controlled trial of omega-3 fatty acids for hyperactivity in autism. J Am Acad Child Adolesc Psychiatry. 2014 Jun 1;53(6):658–66.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Mankad D, Dupuis A, Smile S, Roberts W, Brian J, Lui T, et al. A randomized, placebo controlled trial of omega-3 fatty acids in the treatment of young children with autism. Mol Autism. 2015;6:18.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Voigt RG, Mellon MW, Katusic SK, Weaver AL, Matern D, Mellon B, et al. A randomized, double-blind, placebo-controlled trial of dietary docosahexaenoic acid (DHA) supplementation in children with autism. J Pediatr Gastroenterol Nutr. 2013;58(6):1.

    Google Scholar 

  65. 65.

    Yui K, Koshiba M, Nakamura S, Kobayashi Y. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders. J Clin Psychopharmacol. 2012;32(2):200–6.

    CAS  PubMed  Google Scholar 

  66. 66.

    Lindmark L, Clough P. A 5-month open study with long-chain polyunsaturated fatty acids in dyslexia. J Med Food. 2007;10(4):662–6.

    CAS  PubMed  Google Scholar 

  67. 67.

    Kairaluoma L, Närhi V, Ahonen T, Westerholm J, Aro M. Do fatty acids help in overcoming reading difficulties? A double-blind, placebo-controlled study of the effects of eicosapentaenoic acid and carnosine supplementation on children with dyslexia. Child Care Health Dev. 2009;35(1):112–9.

    CAS  PubMed  Google Scholar 

  68. 68.

    Tan ML, Ho JJ, Teh KH. Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders. Cochrane Database Syst Rev. 2016.

  69. 69.

    Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–38.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(1):263–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    MacFabe DF. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb Ecol Health Dis. 2015;26:28177.

    PubMed  Google Scholar 

  72. 72.

    Scheres A, Milham MP, Knutson B, Castellanos FX. Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61(5):720–4.

    PubMed  Google Scholar 

  73. 73.

    Aarts E, Ederveen THA, Naaijen J, Zwiers MP, Boekhorst J, Timmerman HM, et al. Gut microbiome in ADHD and its relation to neural reward anticipation. Hashimoto K, editor. PLoS One. 2017;12(9):e0183509.

  74. 74.

    Kaplan BJ, Rucklidge JJ, Romijn A, McLeod K. The emerging field of nutritional mental health. Clin Psychol Sci. 2015;3(6):964–80.

    Google Scholar 

  75. 75.

    Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):52.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond). 2011;8(1):34.

    PubMed Central  Google Scholar 

  77. 77.

    Kałużna-Czaplińska J, Błaszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutrition. 2012 feb 1;28(2):124–6.

    PubMed  Google Scholar 

  78. 78.

    Parracho HMRT, Gibson GR, Knott F, Bosscher D, Kleerebezem M, Mccartney AL. A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int J Probiotics Prebiotics. 2010;5(2):69–74.

    Google Scholar 

  79. 79.

    Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav. 2015;138:179–87.

    CAS  PubMed  Google Scholar 

  80. 80.

    Navarro F, Liu Y, Rhoads JM. Can probiotics benefit children with autism spectrum disorders? World J Gastroenterol. 2016;22(46):10093–102.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Starobrat-Hermelin B, Kozielec T. The effects of magnesium physiological supplementation on hyperactivity in children with attention deficit hyperactivity disorder (ADHD). Positive response to magnesium oral loading test. Magnes Res. 1997;10(2):149–56.

    CAS  PubMed  Google Scholar 

  82. 82.

    Bilici M, Yıldırım F, Kandil S, Bekaroğlu M, Yıldırmış S, Değer O, et al. Double-blind, placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Prog Neuro-PsychopharmacolBiol Psychiatry. 2004;28(1):181–90.

    CAS  Google Scholar 

  83. 83.

    Konofal E, Lecendreux M, Deron J, Marchand M, Cortese S, Zaïm M, et al. Effects of iron supplementation on attention deficit hyperactivity disorder in children. Pediatr Neurol. 2008;38(1):20–6.

    PubMed  Google Scholar 

  84. 84.

    Arnold GL, Hyman SL, Mooney RA, Kirby RS. Plasma amino acids profiles in children with autism: potential risk of nutritional deficiencies. J Autism Dev Disord. 2003;33(4):449–54.

    PubMed  Google Scholar 

  85. 85.

    Arnold LE, Disilvestro RA, Bozzolo D, Bozzolo H, Crowl L, Fernandez S, et al. Zinc for attention-deficit/hyperactivity disorder: placebo-controlled double-blind pilot trial alone and combined with amphetamine. J Child Adolesc Psychopharmacol. 2011;21(1):1–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Cortese S, Angriman M, Lecendreux M, Konofal E. Iron and attention deficit/hyperactivity disorder: what is the empirical evidence so far? A systematic review of the literature. Expert Rev Neurother. 2012;12(10):1227–40.

    CAS  PubMed  Google Scholar 

  87. 87.

    Ghanizadeh A, Berk M. Zinc for treating of children and adolescents with attention-deficit hyperactivity disorder: a systematic review of randomized controlled clinical trials. Eur J Clin Nutr. 2013;67(1):122–4.

    CAS  PubMed  Google Scholar 

  88. 88.

    Hariri M, Azadbakht L. Magnesium, iron, and zinc supplementation for the treatment of attention deficit hyperactivity disorder: a systematic review on the recent literature. Int J Prev Med. 2015;6:83.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Dinan TG, Cryan JF. The microbiome-gut-brain Axis in health and disease. Gastroenterol Clin N Am. 2017;46(1):77–89.

    Google Scholar 

  90. 90.

    Dinan TG, Cryan JF, Stanton C. Gut microbes and brain development have black box connectivity. Biol Psychiatry. 2018;83(2):97–9.

    PubMed  Google Scholar 

  91. 91.

    McNally L, Bhagwagar Z, Hannestad J. Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr. 2008;13(6):501–10.

    PubMed  Google Scholar 

  92. 92.

    Oddy WH, Allen KL, Trapp GSA, Ambrosini GL, Black LJ, Huang R-C, et al. Dietary patterns, body mass index and inflammation: pathways to depression and mental health problems in adolescents. Brain Behav Immun. 2018;69:428–39.

    PubMed  Google Scholar 

  93. 93.

    Ames BN, Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased km): relevance to genetic disease and polymorphisms. Am J Clin Nutr. 2002;75(4):616–58.

    CAS  PubMed  Google Scholar 

  94. 94.

    Toker L, Agam G. Mitochondrial dysfunction in psychiatric morbidity: current evidence and therapeutic prospects. Neuropsychiatr Dis Treat. 2015;11:2441–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Gordon HA, Rucklidge JJ, Blampied NM, Johnstone JM. Clinically significant symptom reduction in children with attention-deficit/hyperactivity disorder treated with micronutrients: an open-label reversal design study. J Child Adolesc Psychopharmacol. 2015;25(10):783–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Kaplan BJ, Fisher JE, Crawford SG, Field CJ, Kolb B. Improved mood and behavior during treatment with a mineral-vitamin supplement: an open-label case series of children. J Child Adolesc Psychopharmacol. 2004;14(1):115–22.

    PubMed  Google Scholar 

  97. 97.

    Rucklidge JJ, Frampton CM, Gorman B, Boggis A. Vitamin–mineral treatment of attention-deficit hyperactivity disorder in adults: double-blind randomised placebo-controlled trial. Br J Psychiatry. 2014;204(04):306–15.

    PubMed  Google Scholar 

  98. 98.

    Rucklidge JJ, Eggleston MJF, Johnstone JM, Darling K, Frampton CM. Vitamin-mineral treatment improves aggression and emotional regulation in children with ADHD: a fully blinded, randomized, placebo-controlled trial. J Child Psychol Psychiatry. 2018;59(3):232–46.

    PubMed  Google Scholar 

  99. 99.

    Saad K, Abdel-Rahman AA, Elserogy YM, Al-Atram AA, El-Houfey AA, Othman HA-K, et al. Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J Child Psychol Psychiatry. 2018;59(1):20–9.

    PubMed  Google Scholar 

  100. 100.

    Kerley CP, Power C, Gallagher L, Coghlan D. Lack of effect of vitamin D3 supplementation in autism: a 20-week, placebo-controlled RCT. Arch Dis Child. 2017;102(11):1030–6.

    PubMed  Google Scholar 

  101. 101.

    Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2014;24(6):919–29.

    CAS  PubMed  Google Scholar 

  102. 102.

    Findling RL, Maxwell K, Scotese-Wojtila L, Huang J, Yamashita T, Wiznitzer M. High-dose pyridoxine and magnesium administration in children with autistic disorder: an absence of salutary effects in a double-blind, placebo-controlled study. J Autism Dev Disord. 1997;27(4):467–78.

    CAS  PubMed  Google Scholar 

  103. 103.

    Kuriyama S, Kamiyama M, Watanabe M, Tamahashi S, Muraguchi I, Watanabe T, et al. Pyridoxine treatment in a subgroup of children with pervasive developmental disorders. Dev Med Child Neurol. 2002;44(4):284–6.

    PubMed  Google Scholar 

  104. 104.

    Lelord G, Muh JP, Barthelemy C, Martineau J, Garreau B, Callaway E. Effects of pyridoxine and magnesium on autistic symptoms--initial observations. J Autism Dev Disord. 1981;11(2):219–30.

    CAS  PubMed  Google Scholar 

  105. 105.

    Martineau J, Barthelemy C, Garreau B, Lelord G. Vitamin B6, magnesium, and combined B6-mg: therapeutic effects in childhood autism. Biol Psychiatry. 1985;20(5):467–78.

    CAS  PubMed  Google Scholar 

  106. 106.

    Tolbert L, Haigler T, Waits MM, Dennis T. Brief report: lack of response in an autistic population to a low dose clinical trial of pyridoxine plus magnesium. J Autism Dev Disord. 1993;23(1):193–9.

    CAS  PubMed  Google Scholar 

  107. 107.

    Adams JB, Holloway C. Pilot study of a moderate dose multivitamin/mineral supplement for children with autistic spectrum disorder. J Altern Complement Med. 2004;10(6):1033–9.

    PubMed  Google Scholar 

  108. 108.

    Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, et al. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr. 2011;11:111.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Adams JB, Audhya T, Geis E, Gehn E, Fimbres V, Pollard EL, et al. Comprehensive nutritional and dietary intervention for autism spectrum disorder-a randomized, controlled 12-month trial. Nutrients. 2018;10(3).

    PubMed Central  Google Scholar 

  110. 110.

    Mayer A. Historical changes in the mineral content of fruits and vegetables. Br Food J. 1997;99(6):207–11.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. J. Rucklidge.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Comorbidities

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor, M.R., Chuang, C., Carrasco, K.D. et al. Dietary and Micronutrient Treatments for Children with Neurodevelopment Disorders. Curr Dev Disord Rep 5, 243–252 (2018).

Download citation


  • ADHD
  • Autism
  • Diet
  • Micronutrient
  • PUFAs
  • Children