Abstract
The concept of atypical brain development was introduced by Gilger and Kaplan in 2001 to describe developmental variation in brain functions and to account for the high degree of comorbidity among neurodevelopmental disorders. Developmental coordination disorder (DCD) is a common neurodevelopmental disorder affecting around 5–6 % of school-aged children. It is phenotypically heterogeneous, with up to 70 % of children meeting criteria for at least one other neurodevelopmental disorder. Recent genetic evidence has found that the same genes are implicated in various neurodevelopmental disorders, including DCD, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder, and that these genes play a significant role in brain development. Imaging research has revealed that children with DCD display alterations in brain structure and function and that some of these alterations overlap with those that have been found children with ADHD, whereas others are unique to children who display DCD. Emerging genetic and imaging evidence supports the contention that DCD, which is associated with impairments in motor functioning, behavior, and other neuropsychological functions (e.g., visual perception, executive functioning), is due to atypical brain development. Future research is needed to help clarify the alterations in brain structure and function associated with this disorder and to examine etiological factors (e.g., genetics, teratogens, nutrition, very low birth weight) that place children at risk for DCD.
Similar content being viewed by others
References
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th Edition (DSM-5). Diagnostic and statistical manual of mental disorders 4th edition TR. 2013.
Gillberg C. The ESSENCE in child psychiatry: Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations. Res Dev Disabil. 2010;31(6):1543–51.
Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G. Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry. 2008;47(8):921–9.
Kaplan BJ, Wilson BN, Dewey D, Crawford SG. DCD may not be a discrete disorder. Hum Mov Sci. 1998;17(4–5):471–90.
Taurines R, Schmitt J, Renner T, Conner AC, Warnke A, Romanos M. Developmental comorbidity in attention-deficit/hyperactivity disorder. ADHD Atten Deficit Hyperact Disord. 2010;2(4):267–89.
Taurines R, Schwenck C, Westerwald E, Sachse M, Siniatchkin M, Freitag C. ADHD and autism: differential diagnosis or overlapping traits? A selective review. ADHD Atten Deficit Hyperact Disord. 2012;4(3):115–39.
Willcutt EG, Pennington BF, Duncan L, et al. Understanding the complex etiologies of developmental disorders: behavioral and molecular genetic approaches. J Dev Behav Pediatr. 2010;31(7):533–44.
Blank R, Smiths-Engelsman B, Polatajko H, Wilson P. European Academy for Childhood Disability (EACD): recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Dev Med Child Neurol. 2012;54:54–93. This paper provides recommendations on the definition of developmental coordination disorder, diagnostic criteria, and appropriate interventions based on current research evidence.
Dewey D, Cantell M, Crawford SG. Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. J Int Neuropsychol Soc. 2007;13(2):246–56.
Green D, Charman T, Pickles A, et al. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.
Hill EL, Bishop DVM, Nimmo-Smith I. A dyspraxic deficit in specific language impairment and developmental coordination disorder? Evidence from hand and arm movements. Dev Med Child Neurol. 1998;17(6):388–95.
Kirby A, Sugden D. Children with developmental coordination disorders. J R Soc Med. 2007;100(4):182–6.
Clements SG, Peters JE. Minimal brain dysfunction in the school-aged child. Arch Gen Psychiatr. 1962;6:185–97.
Paine RS. Minimal chronic brain syndromes in children. Dev Med Child Neurol. 1962;4:21–7.
Capute AJ, Palmer FB. A pediatrics overview of the spectrum of developmental disability. J Dev Behav Pediatr. 1980;1:66–9.
Capute AJ, Accardo PJ. A neurodevelopmental perspective on the continuum of developmental disabilities. In: Capute AJ, Accardo PJ, editors. Developmental disabilities in infancy and childhood. Baltimore: Paul H Brooks Publishing Co; 1991.
Gilger JW, Kaplan BJ. Atypical brain development: a conceptual framework for understanding developmental learning disabilities. Dev Neuropsychol. 2001;20(2):465–81. This is the original article that introduced the concept of atypical brain development.
Moreno-De-Luca A, Myers SM, Challman TD, Moreno-De-Luca D, Evans DW, Ledbetter DH. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol. 2013;12(4):406–14. This paper discusses the concept of developmental brain dysfunction within the context of new genetic evidence. It presents the case that the high rates of comorbidity among neurodevelopmental disorders are due to genetic abnormalities, and that specific genetic causes, including certain copy number variants and single-gene mutations, are shared among disorders that are thought to be clinically distinct.
Statistics Canada. Table 2 Population estimates by sex and age group as of July 1, 2013, Canada [Internet]. 2013 [cited 2016 Jan 25]. Available from: http://www.statcan.gc.ca/daily-quoilable from: tidien/131125/t131125a002-eng.htm. 2013 .
Visser J. Developmental coordination disorder: a review of research on subtypes and comorbidities. Hum Mov Sci. 2003;22(4–5):479–93.
Summers J, Larkin D, Dewey D. Activities of daily living in children with developmental coordination disorder: dressing, personal hygiene, and eating skills. Hum Mov Sci. 2008;27(2):215–29.
Summers J, Larkin D, Dewey D. What impact does developmental coordination disorder have on daily routines? Int J Disability Dev Educ. 2008;55(2):131–41.
Missiuna C, Moll S, King G, King S, Law M. “Missed and misunderstood”: children with coordination difficulties in the school system. Int J Spec Educ. 2006;21:53–67.
Wilson PH, Ruddock S, Smits-Engelsman B, Polatajko H, Blank R. Understanding performance deficits in developmental coordination disorder: a meta-analysis of recent research. Dev Med Child Neurol. 2013;55(1):217–28.
Fong SS, Tsang WW, Gy N. Altered postural control strategies and sensory organization in children with developmental coordination disorder. Hum Mov Sc. 2012;31(5):1317–27.
Geuze RH. Postural control in children with developmental coordination disorder. Neural Plast. 2005;12(2–3):183–96.
Dewey D, Kaplan BJ, Crawford SG, Wilson BN. Developmental coordination disorder: associated problems in attention, learning, and psychosocial adjustment. Hum Mov Sci. 2002;21(5–6):905–18.
Pieters S, de Block K, Scheiris J, Eyssen M, Desoete A, Deboutte D, et al. How common are motor problems in children with a developmental disorder: rule or exception? Child Care Health Dev. 2012;38(Dcd):139–45.
Pitcher TM, Piek JP, Hay DA. Fine and gross motor ability in males with ADHD. Dev Med Child Neurol. 2007;45(8):525–35.
Brown-Lum M, Zwicker J. Brian imaging increases our understanding of developmental coordination disorder: a review of literature and future directions. Curr Dev Disord Reports. 2015;2:131–40. This paper provides a recent review of the brain imaging literature on developmental coordination disorder.
Langevin LM, Macmaster FP, Dewey D. Distinct patterns of cortical thinning in concurrent motor and attention disorders. Dev Med Child Neurol. 2015;57(3):257–64. This is the first structural imaging paper to examine cortical thickness in children with DCD only and DCD and co-occurring ADHD. It demonstrated that children with DCD only and DCD + ADHD displayed different patterns of cortical thinning. Children with DCD only displayed thinning in the temporal pole, whereas children with comorbid motor and attention problems displayed global thinning in the frontal, parietal, and temporal lobes.
Langevin LM, Macmaster FP, Crawford S, Lebel C, Dewey D. Common white matter’ microstructure alterations in pediatric motor and attention disorders. J Pediatr. 2014;164(5). This is the first diffusion tensor imaging study to demonstrate that alterations in the corpus callosum are associated with difficulties in motor and attention functioning. Fractional anisotropy (FA) reductions were noted in the frontal regions of the corpus callosum for children with ADHD, whereas children with DCD displayed reductions in regions of the corpus callosum underlying parietal brain regions. Children with comorbid DCD and ADHD displayed FA reductions in both frontal and posterior regions of the corpus callosum.
McLeod KR, Langevin LM, Goodyear BG, Dewey D. Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. NeuroImage Clin. 2014;4:566–75. This is the first paper to examine functional connectivity in the motor network in children with DCD, ADHD and co-occurring DCD + ADHD using resting state fMRI.
Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation in children with developmental coordination disorder is different from their peers. Pediatrics. 2010;126(3):e678–86.
Lahey BB, Van Hulle CA, Singh AL, Waldman ID, Rathouz PJ. Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Arch Gen Psychiatry. 2011;68(2):181–9.
Lichtenstein P, Carlström E, Råstam M, Gillberg C, Anckarsäter H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry. 2010;167(11):1357–63.
Martin NC, Piek JP, Hay D. DCD and ADHD: a genetic study of their shared aetiology. Hum Mov Sci. 2006;25:110–24.
Hawke JL, Wadsworth SJ, DeFries JC. Genetic influences on reading difficulties in boys and girls: the Colorado twin study. Dyslexia. 2006;12(1):21–9.
Posthuma D, Polderman TJC. What have we learned from recent twin studies about the etiology of neurodevelopmental disorders? Curr Opin Neurol. 2013;26:111–21.
Stergiakouli E, Hamshere M, Holmans P, et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. Am J Psychiatry. 2011;169(2):186–94.
Zhang Y, Haraksingh R, Grubert F, et al. Child development and structural variation in the human genome. Child Dev. 2013;84(1):34–48.
Lionel AC, Crosbie J, Barbosa N, et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med. 2011;3(95):95ra75.
Ahn K, Gotay N, Andersen TM, Anvari AA, Gochman P, Lee Y, et al. High rate of disease-related copy number variations in childhood onset schizophrenia. Mol Psychiatry. 2014;19(5):568–72.
Glessner JT, Connolly JJM, Hakonarson H. Rare genomic deletions and duplications and their role in neurodevelopmental disorders. Curr Top Behav Neurosci. 2012;12:345–60. This paper examines the role of CNV research in determining the etiology of developmental disorders such as attention deficit hyperactivity disorder and autism, and discusses relevant methodological considerations.
Oskoui M, Gazzellone MJ, Thiruvahindrapuram B, et al. Clinically relevant copy number variations detected in cerebral palsy. Nat Commun. 2015;6:7949. This is the first paper to show that genes play an important role in cerebral palsy.
Moessner R, Marshall CR, Sutcliffe JS, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet. 2007;81(6):1289–97.
Pinto D, Anney R, Gallinger S, Le Couteur AS, Kolevzon A, González PJ. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94(5):677–94.
Thapar A, Martin J, Mick J, et al. Psychiatric gene discoveries shape evidence on ADHD’s biology. Mol Psychiatry. 2015;1–6.
Bernier F, Mosca, Stephen J Langevin LM, Innes AM, Lionel, Anath C Marshall, Christian C Scherer, Stephen W Parboosingh, Jillian S Dewey D. Copy-number variation in Canadian children with developmental coordination disorder implicates neurodevelopmental genes. Journal of the International Neuropsychological Society : JINS. 2015. This is the first study to investigate copy number variation in children with DCD.
Mascaro A, Cesare P, Sacconi L, et al. In vivo single branch axotomy induces GAP-43–dependent sprouting and synaptic remodeling in cerebellar cortex. Proc Natl Acad Sci U S A. 2013;110:10824–9.
Shen Y, Meiri K. GAP-43 dependency defines distinct effects of netrin-1 on cortical and spinal neurite outgrowth and directional guidance. Int J Dev Neurosci. 2013;31:11–20.
Zaccaria KJ, Lagace DC, Eisch AJ, McCasland JS. Resistance to change and vulnerability to stress: autistic-like features of GAP43-deficient mice. Genes Brain Behav. 2010;9:985–96.
Shuvarikov A, Campbell I, Dittwald P, Neill N, Bialer M, Moore C, et al. Recurrent HERV-H-Mediated 3q13.2-q13.31 Deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat. 2013;1–31.
Shen Y-C, Tsai H-M, Cheng M-C, Hsu S-H, Chen S-F, Chen C-H. Genetic and functional analysis of the gene encoding GAP-43 in schizophrenia. Schizophr Res. 2012;134:239–45.
Van Waelvelde H, De Weerdt W, De Cock P, Janssens L, Feys H, Smits Engelsman BCM. Parameterization of movement execution in children with developmental coordination disorder. Brain Cogn. 2006;60:20–31.
Bo J, Lee C-M. Motor skill learning in children with developmental coordination disorder. Res Dev Disabil. 2013;34(6):2047–55.
Sigmundsson H. Perceptual deficits in clumsy children: inter- and intra-modal matching approach—a window into clumsy behavior. Neural Plast. 2003;10(1):27–38.
Wilson PH, McKenzie BE. Information processing deficits associated with developmental coordination disorder: a meta-analysis of research findings. J Child Psychol Psychiatry. 1998;39(6):829–40.
De Oliveira RF, Wann JP. Integration of dynamic information for visuomotor control in young adults with developmental coordination disorder. Exp Brain Res. 2010;205:387–94.
Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.
Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24(1):167–202.
Piek JP, Dyck MJ, Francis M, Conwell A. Working memory, processing speed, and set-shifting in children with developmental coordination disorder and attention-deficit-hyperactivity disorder. Dev Med Child Neurol. 2007;49(9):678–83.
Rosenblum S, Regev N. Timing abilities among children with developmental coordination disorders (DCD) in comparison to children with typical development. Res Dev Disabil. 2013;34(1):218–27.
Cantin N, Polatajko HJ, Thach WT, Jaglal S. Developmental coordination disorder: exploration of a cerebellar hypothesis. Hum Mov Sci. 2007;26(3):491–509.
Kagerer F, Bo J, Contreras-Vidal JL, Clark JE. Visuomotor adaptation in children with developmental coordination disorder. Mot Control. 2004;8:450–60.
Kagerer F, Contreras-Vidal JL, Bo J, Clark JE. Abrupt, but not gradual visuomotor distortion facilitates adaptation in children with developmental coordination disorder. Hum Mov Sci. 2006;25:622–33.
Groenewegen HJ. The basal ganglia and motor control. Neural Plast. 2003;10(1–2):107–20.
Lundy-Ekman L, Ivry R. Timing and force control deficits in clumsy children. J Cogn Neurosc. 1991;3(4):367–76.
Smits-Engelsman BCM, Westenberg Y, Duysens J. Children with developmental coordination disorder are equally able to generate force but show more variability than typically developing children. Hum Mov Sci. 2008;27(2):296–309.
Dewey D, Kaplan BJ. Subtyping of developmental motor deficits. Dev Neuropsychol. 1994;10(3):265–84.
Maruff P, Wilson P, Trebilcock M, Currie J. Abnormalities of imagined motor sequences in children with developmental coordination disorder. Neuropsychologia. 1999;37(11):1317–24.
Mountcastle VB. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 1957;20(4):408–34.
Colby CL, Goldberg ME. Space and attention in parietal cortex. Annu Rev Neurosci. 1999;22:319–49.
Husain M, Nachev P. Space and the parietal cortex. Trends Cogn Sci. 2007;11(1):30–6.
Andersen RA, Cui H. Intention, action planning, and decision making in parietal-frontal circuits. Neuron. 2009;63(5):568–83.
Wilson PH, Maruff P, Ives S, Currie J. Abnormalities of motor and praxis imagery in children with DCD. Hum Mov Sci. 2001;20(1–2):135–59.
Williams J, Thomas PR, Maruff P, Wilson PH. The link between motor impairment level and motor imagery ability in children with developmental coordination disorder. Hum Mov Sci. 2008;27(78):270–85.
Peters LHJ, Maathuis CGB, Hadders-Algra M. Neural correlates of developmental coordination disorder. Dev Med Child Neurol. 2013;55(SUPPL.4):59–64. 80.
Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a pilot diffusion tensor imaging study. Pediatr Neurol. 2012;46(3):162–7.
Tamm L, Barnea-Goraly N, Reiss AL. Diffusion tensor imaging reveals white matter abnormalities in attention-deficit/hyperactivity disorder. Psychiatry Res. 2012;202(2):150–4.
Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. Int J Dev Neurosci. 2011;29(2):145–52.
Querne L, Berquin P, Vernier-Hauvette MP, et al. Dysfunction of the attentional brain network in children with developmental coordination disorder: a fMRI study. Brain Res. 2008;1244:89–102.
Debrabant J, Gheysen F, Caeyenberghs K, Van Waelvelde H, Vingerhoets G. Neural underpinnings of impaired predictive motor timing in children with developmental coordination disorder. Res Dev Disabil. 2013;34(5):1478–87.
Kashiwagi M, Iwaki S, Narumi Y, Tamai H, Suzuki S. Parietal dysfunction in developmental coordination disorder: a functional MRI study. Neuroreport. 2009;20(2):1319–24.
Licari MK, Billington J, Reid SL, et al. Cortical functioning in children with developmental coordination disorder: a cortical overflow study. Exp Brain Res. 2015;233(6):1703–10.
Katschmarsky S, Cairney S, Maruff P, Wilson PH, Currie J. The ability to execute saccades on the basis of efference copy: impairments in double-step saccade performance in children with developmental co-ordination disorder. Exp Brain Res. 2001;134(1):73–8.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Deborah Dewey reports grants from Canadian Institutes of Health Research.
Francois P. Bernier declares that he has no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Additional information
This article is part of the Topical Collection on Disorders of Motor
Rights and permissions
About this article
Cite this article
Dewey, D., Bernier, F.P. The Concept of Atypical Brain Development in Developmental Coordination Disorder (DCD)—a New Look. Curr Dev Disord Rep 3, 161–169 (2016). https://doi.org/10.1007/s40474-016-0086-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40474-016-0086-6