Skip to main content
Log in

Motor Imagery Neurofeedback: From System Conceptualization to Neural Correlates

  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As a topic review on neurofeedback and motor imagery, this work revises the overall foundations and conceptualization of neurofeedback training (NFBT), focusing on its current trends and applications in the field of motor imagery (MI). This paradigm consists of imagined execution of motor action, without the explicit motor output and has potential beneficial applications in motor rehabilitation protocols. Given the complexity of MI, aiming to also provide an entry-level basis in the subject, we have compiled basic aspects of movement execution as well, to support better understanding of the covert aspects of the processes involved in its planning stages.

Recent Findings

We have explored recent trends regarding the individualization of MI protocols for NFBT and brain-computer interfaces, which seems to be an emerging branch of evaluations in the field. After establishing a fundamental basis on motor functions, the conceptualization of MI is explored through the contrast of the cognitive and motor models for explaining the task. Research evidence for both models are discussed through reviewing the main areas involved, as revealed by functional neuroimaging studies.

Summary

Finally, we discuss recent trends in NFBT-MI practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marzbani H, Marateb HR, Mansourian M. Methodological note: neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin Neurosci. 2016;7(2):143–58.

    PubMed  PubMed Central  Google Scholar 

  2. Blume F, Hudak J, Dresler T, Ehlis AC, Kühnhausen J, Renner TJ, et al. NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial. Trials. 2017;18(1):1–6.

    Article  Google Scholar 

  3. Marx AM, Ehlis AC, Furdea A, Holtmann M, Banaschewski T, Brandeis D, et al. Near-infrared spectroscopy (NIRs) neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD)—a pilot study. Front Hum Neurosci. 2015;8:1–13.

    Article  Google Scholar 

  4. Ehlis AC, Barth B, Hudak J, Storchak H, Weber L, Kimmig ACS, et al. Near-infrared spectroscopy as a new tool for neurofeedback training: applications in psychiatry and methodological considerations. Japan Psychol Res. 2018;60:225–41.

    Article  Google Scholar 

  5. Sherwood MS, Diller EE, Ey E, Ganapathy S, Nelson JT, Parker JG. A protocol for the administration of real-time fMRI neurofeedback training. J Visual Exp. 2017;2017(126):e55543.

    Google Scholar 

  6. Watanabe T, Sasaki Y, Shibata K, Kawato M. Advances in fMRI real-time neurofeedback. Trends Cogn Sci. 2017;21:997–1010.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thibault RT, MacPherson A, Lifshitz M, Roth RR, Raz A. Neurofeedback with fMRI: a critical systematic review. NeuroImage. 2018;172:786–807.

    Article  PubMed  Google Scholar 

  8. Foldes ST, Vinjamuri RK, Wang W, Weber DJ, Collinger JL. Stability of MEG for real-time neurofeedback. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. IEEE; 2011. p. 5778–81.

    Google Scholar 

  9. Okazaki YO, Horschig JM, Luther L, Oostenveld R, Murakami I, Jensen O. Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance. Neuroimage. 2015;107:323–32.

    Article  PubMed  Google Scholar 

  10. Coben R, Evans JR. Neurofeedback and neuromodulation techniques and applications. Academic Press; 2011.

    Google Scholar 

  11. Vecchio F, Babiloni C, Lizio R, De Vico FF, Blinowska K, Verrienti G, et al. Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Suppl Clin Neurophysiol. 2013;62:223–36.

    Article  PubMed  Google Scholar 

  12. Babiloni C, Ferri R, Binetti G, Cassarino A, Forno GD, Ercolani M, et al. Fronto-parietal coupling of brain rhythms in mild cognitive impairment: a multicentric EEG study. Brain Res Bull. 2006;69(1):63–73.

    Article  PubMed  Google Scholar 

  13. Babiloni C, Binetti G, Cassetta E, Forno GD, Del PC, Ferreri F, et al. Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol. 2006;117(2):252–68.

    Article  PubMed  Google Scholar 

  14. Horowitz S. Neurofeedback therapy in clinical applications and for cognitive enhancement. Altern Complement Ther. 2012;18(5):242–7.

    Article  Google Scholar 

  15. Walker JE, Kozlowski GP. Neurofeedback treatment of epilepsy. Child Adolesc Psychiatr Clin N Am. 2005;14:163–76.

    Article  PubMed  Google Scholar 

  16. Uhlmann C, Fröscher W. Biofeedback treatment in patients with refractory epilepsy: changes in depression and control orientation. Seizure. 2001;10(1):34–8.

    Article  PubMed  CAS  Google Scholar 

  17. Canterberry M, Hanlon CA, Hartwell KJ, Li X, Owens M, LeMatty T, et al. Sustained reduction of nicotine craving with real-time neurofeedback: exploring the role of severity of dependence. Nicotine Tob Res. 2013;15(12):2120–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Thornton KE. Perspectives on placebo: the psychology of neurofeedback. NeuroRegulation. 2018;5:137–49.

    Article  Google Scholar 

  19. Razoki B. Neurofeedback versus psychostimulants in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a systematic review. Neuropsychiatr Dis Treatment. 2018;14:2905–13.

    Article  Google Scholar 

  20. Baydala L, Wikman E. The efficacy of neurofeedback in the management of children with attention deficit/hyperactivity disorder. Paediatr Child Health. 2001;6:451–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. De Ruiter MA, Oosterlaan J, Schouten-Van Meeteren AYN, Maurice-Stam H, Van Vuurden DG, Gidding C, et al. Neurofeedback ineffective in paediatric brain tumour survivors: results of a double-blind randomised placebo-controlled trial. Eur J Cancer. 2016;64:62–73.

    Article  PubMed  Google Scholar 

  22. Micoulaud-Franchi JA, McGonigal A, Lopez R, Daudet C, Kotwas I, Bartolomei F. Electroencephalographic neurofeedback: level of evidence in mental and brain disorders and suggestions for good clinical practice. Neurophysiol Clinique. 2015;45:423–33.

    Article  Google Scholar 

  23. Omejc N, Rojc B, Battaglini PP, Marusic U. Review of the therapeutic neurofeedback method using electroencephalography: EEG neurofeedback. Bosnian J Basic Med Sci. 2019;19:213–20.

    Google Scholar 

  24. Thibault RT, Lifshitz M, Raz A. The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex. 2016;74:247–61.

    Article  PubMed  Google Scholar 

  25. Orndorff-Plunkett F, Singh F, Aragón OR, Pineda JA. Assessing the effectiveness of neurofeedback training in the context of clinical and social neuroscience. Brain Sci. 2017;7:95.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Micoulaud Franchi JA, Jeunet C, Lotte F. Neurofeedback: a challenge for integrative clinical neurophysiological studies. Neurophysiol Clin. 2020;50(1):1–3.

    Article  PubMed  Google Scholar 

  27. Fovet T, Jardri R, Linden D. Current issues in the use of fMRI-based neurofeedback to relieve psychiatric symptoms. Curr Pharm Des. 2015;21(23):3384–94.

    Article  PubMed  CAS  Google Scholar 

  28. Vernon D, Dempster T, Bazanova O, Rutterford N, Pasqualini M, Andersen S. Alpha neurofeedback training for performance enhancement: reviewing the methodology. J Neurother. 2009;13(4):214–27.

    Article  Google Scholar 

  29. Finger S. Origins of neuroscience: a history of explorations into brain function. Oxford University Press; 1994.

    Book  Google Scholar 

  30. Lanska DJ. Chapter 33 The history of movement disorders. In: Handbook of Clinical Neurology. Elsevier; 2009. p. 501–46.

    Google Scholar 

  31. Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth AJ, Kandel ER, et al. Principles of neural science, Fifth Edition (Principles of Neural Science (Kandel)). McGraw-hill; 2012.

    Google Scholar 

  32. Holmes NP, Spence C. The body schema and multisensory representation(s) of peripersonal space. Cogn Process. 2004;5(2):94–105.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rothwell JC. Cerebral cortex. In: Control of human voluntary movement. Springer Science & Business Media; 1994. p. 293–386.

    Chapter  Google Scholar 

  34. Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. 4th ed. Lippincott Williams & Wilkins; 2014. p. 1–641.

    Google Scholar 

  35. Bizzi E, Ajemian R. From motor planning to execution: a sensorimotor loop perspective. J Neurophysiol. 2020;124:1815–23.

    Article  PubMed  Google Scholar 

  36. Decety J. The neurophysiological basis of motor imagery. Behav Brain Res. 1996;77:45–52.

    Article  PubMed  CAS  Google Scholar 

  37. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage. 2001;14(1):S103–9.

    Article  PubMed  CAS  Google Scholar 

  38. Van der Lubbe RHJ, Sobierajewicz J, Jongsma MLA, Verwey WB, Przekoracka-Krawczyk A. Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence. Int J Psychophysiol. 2021;164:71–86.

    Article  PubMed  Google Scholar 

  39. Glover S, Baran M. The motor-cognitive model of motor imagery: evidence from timing errors in simulated reaching and grasping. J Exp Psychol Hum Percept Perform. 2017;43(7):1359–75.

    Article  PubMed  Google Scholar 

  40. Ingvar DH, Philipson L. Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance. Ann Neurol. 1977;2(3):230–7.

    Article  PubMed  CAS  Google Scholar 

  41. Gray R. Links between attention, performance pressure, and movement in skilled motor action. Curr Dir Psychol Sci. 2011;20(5):301–6.

    Article  Google Scholar 

  42. Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501.

    Article  PubMed  CAS  Google Scholar 

  43. Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JAS. Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Cogn Brain Res. 2003;15(3):250–60.

    Article  Google Scholar 

  44. De Lange FP, Hagoort P, Toni I. Neural topography and content of movement representations. J Cogn Neurosci. 2005;17(1):97–112.

    Article  PubMed  Google Scholar 

  45. Stanton BR, Williams VC, Leigh PN, Williams SCR, Blain CRV, Giampietro VP, et al. Cortical activation during motor imagery is reduced in amyotrophic lateral sclerosis. Brain Res. 2007;1172(1):145–51.

    Article  PubMed  CAS  Google Scholar 

  46. Ionta S, Ferretti A, Merla A, Tartaro A, Romani GL. Step-by-step: the effects of physical practice on the neural correlates of locomotion imagery revealed by fMRI. Hum Brain Mapp. 2010;31(5):694–702.

    Article  PubMed  Google Scholar 

  47. Halder S, Agorastos D, Veit R, Hammer EM, Lee S, Varkuti B, et al. Neural mechanisms of brain-computer interface control. Neuroimage. 2011;55(4):1779–90.

    Article  PubMed  CAS  Google Scholar 

  48. Chang Y, Lee JJ, Seo JH, Song HJ, Kim YT, Lee HJ, et al. Neural correlates of motor imagery for elite archers. NMR Biomed. 2011;24(4):366–72.

    Article  PubMed  Google Scholar 

  49. Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, et al. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. PLoS One. 2012;7(3):e32234.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  50. Szameitat AJ, McNamara A, Shen S, Sterr A. Neural activation and functional connectivity during motor imagery of bimanual everyday actions. PLoS One. 2012;7(6):e38506.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wong WW, Chan ST, Tang KW, Meng F, Tong KY. Neural correlates of motor impairment during motor imagery and motor execution in sub-cortical stroke. Brain Inj. 2013;27(6):651–63.

    Article  PubMed  Google Scholar 

  52. Yang L, Leung H, Plank M, Snider J, Poizner H. Alpha and beta band power changes predict reaction time and endpoint error during planning reaching movements. In: Proceedings - 2014 7th International Conference on BioMedical Engineering and Informatics, BMEI 2014. Institute of Electrical and Electronics Engineers Inc.; 2015. p. 264–8.

    Google Scholar 

  53. Van der Meulen M, Allali G, Rieger SW, Assal F, Vuilleumier P. The influence of individual motor imagery ability on cerebral recruitment during gait imagery. Hum Brain Mapp. 2014;35(2):455–70.

    Article  PubMed  Google Scholar 

  54. Peterson DS, Pickett KA, Duncan RP, Perlmutter JS, Earhart GM. Brain activity during complex imagined gait tasks in Parkinson disease. Clin Neurophysiol. 2014;125(5):995–1005.

    Article  PubMed  Google Scholar 

  55. Blumen HM, Holtzer R, Brown LL, Gazes Y, Verghese J. Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly. Hum Brain Mapp. 2014;35(8):4090–104.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bartolo A, Coello Y, Edwards MG, Delepoulle S, Endo S, Wing AM. Contribution of the motor system to the perception of reachable space: an fMRI study. Eur J Neurosci. 2014;40(12):3807–17.

    Article  PubMed  Google Scholar 

  57. Kraft E, Schaal MC, Lule D, König E, Scheidtmann K. The functional anatomy of motor imagery after sub-acute stroke. NeuroRehabilitation. 2015;36(3):329–37.

    Article  PubMed  Google Scholar 

  58. Oostra KM, Van Bladel A, Vanhoonacker ACL, Vingerhoets G. Damage to fronto-parietal networks impairs motor imagery ability after stroke: a voxel-based lesion symptom mapping study. Front. Behav Neurosci. 2016;10(FEB):5.

    Google Scholar 

  59. Tang Z, Sun S, Zhang S, Chen Y, Li C, Chen S. A brain-machine interface based on ERD/ERS for an upper-limb exoskeleton control. Sensors (Switzerland). 2016;16(12):2050.

    Article  ADS  PubMed Central  Google Scholar 

  60. Bonzano L, Roccatagliata L, Ruggeri P, Papaxanthis C, Bove M. Frontoparietal cortex and cerebellum contribution to the update of actual and mental motor performance during the day. Sci Rep. 2016;6(1):30126.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  61. Andrade J, Cecílio J, Simões M, Sales F, Castelo-Branco M. Separability of motor imagery of the self from interpretation of motor intentions of others at the single trial level: an EEG study. J Neuroeng Rehabil. 2017;14(1):1–13.

    Article  Google Scholar 

  62. Makary MM, Eun S, Park K. Greater corticostriatal activation associated with facial motor imagery compared with motor execution: a functional MRI study. Neuroreport. 2017;28(10):610–7.

    Article  PubMed  Google Scholar 

  63. Thomas KP, Robinson N, Smitha KG, Vinod AP. EEG-based discriminative features during hand movement execution and imagination. In: 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018. IEEE; 2018. p. 883–8.

    Google Scholar 

  64. Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev. 2018;94:31–44.

  65. Lee WH, Kim E, Seo HG, Oh BM, Nam HS, Kim YJ, et al. Target-oriented motor imagery for grasping action: different characteristics of brain activation between kinesthetic and visual imagery. Sci Rep. 2019;9(1):12770.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Gerardin E, Sirigu A, Léhericy S, Poline JB, Gaymard B, Marsault C, et al. Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex. 2000;10(11):1093–104.

    Article  PubMed  CAS  Google Scholar 

  67. Batula AM, Mark JA, Kim YE, Ayaz H. Comparison of brain activation during motor imagery and motor movement using fNIRS. Comput Intell Neurosci. 2017;2017 https://doi.org/10.1155/2017/5491296.

  68. Meng HJ, Pi YL, Liu K, Cao N, Wang YQ, Wu Y, et al. Differences between motor execution and motor imagery of grasping movements in the motor cortical excitatory circuit. PeerJ. 2018;2018(8)

  69. Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930–49.

    Article  PubMed  Google Scholar 

  70. Dechent P, Merboldt KD, Frahm J. Is the human primary motor cortex involved in motor imagery? Cogn Brain Res. 2004;19(2):138–44.

    Article  Google Scholar 

  71. Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke. 2006;37(7):1941–52.

    Article  PubMed  Google Scholar 

  72. Kasess CH, Windischberger C, Cunnington R, Lanzenberger R, Pezawas L, Moser E. The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. Neuroimage. 2008;40(2):828–37.

    Article  PubMed  Google Scholar 

  73. Glover S, Bibby E, Tuomi E. Executive functions in motor imagery: support for the motor-cognitive model over the functional equivalence model. Exp Brain Res. 2020;238(4):931–44.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Stefano Filho CA, Attux R, Castellano G. Considerations on the Individualization of motor imagery neurofeedback training. In: CCIS, Communications in Computer and Information Science, vol. 1068. Springer International Publishing; 2019. p. 236–48.

    Google Scholar 

  75. Stefano Filho CA, Costa TBS, Uribe LFS, Rodrigues PG, Soriano DC, Attux R, et al. On the (in)efficacy of motor imagery training without feedback and event-related desynchronizations considerations. Biomed Phys Eng Express. 2020;6(3):035030.

    Article  PubMed  CAS  Google Scholar 

  76. Rodrigues PG, Filho CAS, Attux R, Castellano G, Soriano DC. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Med Biol Eng Comput. 2019;57(8):1709–25.

    Article  PubMed  Google Scholar 

  77. Uribe LFS, Filho CAS, De Oliveira VA, Da Silva Costa TB, Rodrigues PG, Soriano DC, et al. A correntropy-based classifier for motor imagery brain-computer interfaces. Biomed Phys Eng Express. 2019;5(6):065026.

    Article  Google Scholar 

  78. Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett. 1997;239(2–3):65–8.

    Article  PubMed  CAS  Google Scholar 

  79. Pfurtscheller G, Neuper C. Motor imagery direct communication. Proceedings of the IEEE. 2001;89(7):1123–34.

    Article  Google Scholar 

  80. Neuper C, Wortz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Event-Relate Dynam Brain Oscill. 2006;159:211–22.

    Article  Google Scholar 

  81. Pfurtscheller G, Neuper C. Chapter 28 Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments. Prog Brain Res. 2006;159:433–7.

  82. Pfurtscheller G, Lopes Da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

    Article  PubMed  CAS  Google Scholar 

  83. Hu. Application of energy entropy in motor imagery EEG classification. Int J Digit Content: Technol Appl. 2009;3(2):83–90.

    Google Scholar 

  84. Xu B, Song A. Pattern recognition of motor imagery EEG using wavelet transform. J Biomed Sci Eng. 2008;01(01):64–7.

    Article  Google Scholar 

  85. Hsu WY. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification. Int J Neural Syst. 2013;23(6):1350026.

    Article  PubMed  Google Scholar 

  86. Nam CS, Jeon Y, Kim YJ, Lee I, Park K. Movement imagery-related lateralization of event-related (de)synchronization (ERD/ERS): motor-imagery duration effects. Clin Neurophysiol. 2011;122(3):567–77.

    Article  PubMed  Google Scholar 

  87. Jeon Y, Nam CS, Kim YJ, Whang MC. Event-related (De)synchronization (ERD/ERS) during motor imagery tasks: implications for brain-computer interfaces. Int J Ind Ergon. 2011;41(5):428–36.

    Article  Google Scholar 

  88. Castro MCF, Masiero AA, Rocha FT, Thomaz AP. Motor imagery recognition and its cerebral mapping. ISSNIP Biosignals and Biorobotics Conference, BRC; 2014.

    Book  Google Scholar 

  89. Xu L, Zhang H, Hui M, Long Z, Jin Z, Liu Y, et al. Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory. Neuroscience. 2014;261:184–94.

    Article  PubMed  CAS  Google Scholar 

  90. Filho CAS, Attux R, Castellano G. EEG sensorimotor rhythms’ variation and functional connectivity measures during motor imagery: linear relations and classification approaches. PeerJ. 2017;5:e3983.

    Article  Google Scholar 

  91. Ono Y, Wada K, Kurata M, Seki N. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback. Neuropsychologia. 2018;114:134–42.

    Article  PubMed  Google Scholar 

  92. Ota Y, Takamoto K, Urakawa S, Nishimaru H, Matsumoto J, Takamura Y, et al. Motor imagery training with neurofeedback from the frontal pole facilitated sensorimotor cortical activity and improved hand dexterity. Front Neurosci. 2020;14(January):1–16.

    Google Scholar 

  93. Friesen CL, Bardouille T, Neyedli HF, Boe SG. Combined action observation and motor imagery neurofeedback for modulation of brain activity. Front Hum Neurosci. 2017;10(January):1–14.

    Google Scholar 

  94. Mizuguchi N, Nakata H, Uchida Y, Kanosue K. Motor imagery and sport performance. J Phys Fit Sports Med. 2012;1(1):103–11.

    Article  Google Scholar 

  95. Grabherr L, Jola C, Berra G, Theiler R, Mast FW. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis. NeuroRehabilitation. 2015;36(2):157–66.

    Article  PubMed  Google Scholar 

  96. Lee G, Song C, Lee Y, Cho H, Lee S. Effects of motor imagery training on gait ability of patients with chronic stroke. J Phys Ther Sci. 2011;23(2):197–200.

    Article  Google Scholar 

  97. Oostra KM, Oomen A, Vanderstraeten G, Vingerhoets G. Influence of motor imagery training on gait rehabilitation in sub-acute stroke: a randomized controlled trial. J Rehabil Med. 2015;47(3):204–9.

    Article  PubMed  Google Scholar 

  98. Szynkiewicz SH, Nobriga CV, Cheung A, Khoury L, Piven M, Quibin K. Mental practice using motor imagery in dysphagia rehabilitation: a survey of practicing speech-language pathologists. In: Seminars in Speech and Language, vol. 41. Thieme Medical Publishers; 2020. p. 349–64.

    Google Scholar 

  99. Kappes HB, Morewedge CK. Mental simulation as substitute for experience. Soc Personal Psychol Compass. 2016;10(7):405–20.

    Article  Google Scholar 

  100. López ND, Monge Pereira E, Centeno EJ, Miangolarra Page JC. Motor imagery as a complementary technique for functional recovery after stroke: a systematic review. Top Stroke Rehabil. 2019;26(8):576–87.

    Article  PubMed  Google Scholar 

  101. Kaplan A, Vasilyev A, Liburkina S, Yakovlev L. Poor BCI performers still could benefit from motor imagery training. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer International Publishing; 2016. p. 46–56.

    Google Scholar 

  102. Bermúdez I, Badia S, García Morgade A, Samaha H, Verschure PFMJ. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training. IEEE Trans Neural Syst Rehab Eng. 2013;21(2):174–81.

    Article  Google Scholar 

  103. Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I. Brain–computer interface spellers: a review. Brain Sci. 2018;8(4):57.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Li F, Zhang T, Li BJ, Zhang W, Zhao J, Song LP. Motor imagery training induces changes in brain neural networks in stroke patients. Neural Regen Res. 2018;13(10):1771–81.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sebastian-Romagosa M, Ortner R, Udina-Bonet E, Dinares-Ferran J, Mayr K, Cao F, et al. Laterality coefficient: an EEG parameter related with the functional improvement in stroke patients. In: 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019 - Proceedings. IEEE; 2019.

    Google Scholar 

  106. Yu T, Xiao J, Wang F, Zhang R, Gu Z, Cichocki A, et al. Enhanced motor imagery training using a hybrid BCI with feedback. IEEE Trans Biomed Eng. 2015;62(7):1706–17.

    Article  PubMed  Google Scholar 

  107. Amiri S, Rabbi A, Azinfar L, Fazel-Rezai R. A review of P300, SSVEP, and hybrid P300/SSVEP brain- computer interface systems. In: Brain-Computer Interface Systems - Recent Progress and Future Prospects. London: In Tech; 2013.

    Google Scholar 

  108. Yin E, Zhou Z, Jiang J, Chen F, Liu Y, Hu D. A speedy hybrid BCI spelling approach combining P300 and SSVEP. IEEE Trans Biomed Eng. 2014;61(2):473–83.

    Article  ADS  PubMed  Google Scholar 

  109. Yin E, Zeyl T, Saab R, Chau T, Hu D, Zhou Z. A hybrid brain - computer interface based on the fusion of P300 and SSVEP scores. IEEE Trans Neural Syst Rehab Eng. 2015;23(4):693–701.

    Article  Google Scholar 

  110. Wang M, Daly I, Allison BZ, Jin J, Zhang Y, Chen L, et al. A new hybrid BCI paradigm based on P300 and SSVEP. J Neurosci Methods. 2015;244:16–25.

    Article  PubMed  Google Scholar 

  111. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, et al. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage. 2003;19(3):577–86.

    Article  PubMed  Google Scholar 

  112. Weiskopf N, Scharnowski F, Veit R, Goebel R, Birbaumer N, Mathiak K. Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris. 2004;98:357–73.

    Article  PubMed  Google Scholar 

  113. Wang T, Mantini D, Gillebert CR. The potential of real-time fMRI neurofeedback for stroke rehabilitation: a systematic review. Cortex. 2018;107:148–65.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tong Y, Hocke LM, Frederick BB. Low frequency systemic hemodynamic “noise” in resting state BOLD fMRI: characteristics, causes, implications, mitigation strategies, and applications. Front Neurosci. 2019;13:787.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hwang HJ, Kwon K, Im CH. Neurofeedback-based motor imagery training for brain-computer interface (BCI). J Neurosci Methods. 2009;179(1):150–6.

    Article  PubMed  Google Scholar 

  116. Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin Neurophysiol. 2009;120(2):239–47.

    Article  PubMed  Google Scholar 

  117. Elmahdi RE, Ahmed NY, Amin MBM, Hamza AO. A review of using common spatial pattern in discrimination of multiclass motor imagery–based brain-computer interface. J Clin Eng. 2020;45(1):45–50.

    Article  Google Scholar 

  118. Xia B, Zhang Q, Xie H, Li J. A neurofeedback training paradigm for motor imagery based brain-computer interface. In: Proceedings of the International Joint Conference on Neural Networks. IEEE; 2012. p. 11–4.

    Google Scholar 

  119. Lotte F, Larrue F, Mühl C. Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design. Front Hum Neurosci. 2013;7((SEP)):1–11.

    Google Scholar 

  120. Kwon M, Cho H, Won K, Ahn M, Jun SC. Event-related desynchronization (ERD) may not be correlated with motor imagery BCI performance. In: Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018. IEEE; 2019. p. 1133–7.

    Google Scholar 

  121. Lee M, Yoon JG, Lee SW. Predicting motor imagery performance from resting-state EEG using dynamic causal modeling. Front Hum Neurosci. 2020;14:321.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhang T, Liu T, Li F, Li M, Liu D, Zhang R, et al. Structural and functional correlates of motor imagery BCI performance: insights from the patterns of fronto-parietal attention network. Neuroimage. 2016;134:475–85.

    Article  PubMed  Google Scholar 

  123. Jeunet C, Glize B, McGonigal A, Batail JM, Micoulaud-Franchi JA. Using EEG-based brain computer interface and neurofeedback targeting sensorimotor rhythms to improve motor skills: theoretical background, applications and prospects. Neurophysiol Clin. 2019;49(2):125–36.

    Article  PubMed  Google Scholar 

  124. Stefano Filho CA, Attux R, Castellano G. Actual, sham and no-feedback effects in motor imagery practice. Biomed Signal Process Ctrl. 2022;1(71):103262.

    Article  Google Scholar 

  125. Stefano Filho CA, Attux R, Castellano G. Motor imagery practice and feedback effects on functional connectivity. J Neural Eng. 2022 Jan;18(6):066048. Available from: https://iopscience.iop.org/article/10.1088/1741-2552/ac456d

    Article  Google Scholar 

  126. Daeglau M, Wallhoff F, Debener S, Condro IS, Kranczioch C, Zich C. Challenge accepted? Individual performance gains for motor imagery practice with humanoid robotic EEG neurofeedback. Sensors. 2020;20(6):1620.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  127. Lioi G, Butet S, Fleury M, Bannier E, Lécuyer A, Bonan I, et al. A multi-target motor imagery training using bimodal EEG-fMRI neurofeedback: a pilot study in chronic stroke patients. Front Hum Neurosci. 2020;14:497414.

    Article  Google Scholar 

  128. Almufareh MF, Kausar S, Humayun M, Tehsin S. Leveraging motor imagery rehabilitation for individuals with disabilities: a review. Healthcare. 2023;11:2653. Available from: https://www.mdpi.com/2227-9032/11/19/2653/htm

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Availability of Data and Materials

Access to the data can be granted by the corresponding author upon request.

Funding

This research was funded by FAPESP (“Fundação de Amparo à Pesquisa do Estado de São Paulo,” São Paulo’s Research Foundation), grant 2016/22116-9.

Author information

Authors and Affiliations

Authors

Contributions

C.A.S.F. wrote the main text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Carlos A. Stefano Filho.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines). In such cases, studies were approved by the University of Campinas’ Ethical Committee (CAAE: 53041616.6.0000.5404). All participants signed an informed consent term, freely agreeing to participate in this research project.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefano Filho, C.A., Attux, R. & Castellano, G. Motor Imagery Neurofeedback: From System Conceptualization to Neural Correlates. Curr Behav Neurosci Rep (2024). https://doi.org/10.1007/s40473-024-00275-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40473-024-00275-w

Keywords

Navigation