Skip to main content
Log in

Abstract

Purpose of review

This paper reviews modern literature describing the role of genetics in schizophrenia pathogenesis.

Recent findings

The largest population study investigating heritability of psychotic disorders to date reported a monozygotic (MZ) proband concordance rate of 33%, a dizygotic (DZ) proband concordance rate of 7%, and a heritability estimate around 80% for MZ twin pairs. Looking at copy number variants, researchers investigate specific chromosomal differences to better understand the genetic contributions to psychotic disorders. Further, two high-risk regions, one on chromosome 22 and another on 16, are of much interest among psychiatric geneticists due to their strong association with psychotic symptoms.

Summary

Classic twin studies and genetic variation analyses enhance our understanding of schizophrenia’s etiology. Recent findings reviewed below highlight a strong genetic contribution to the development of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All datasets can be accessed from the PubMed Database.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wahbeh MH, Avramopoulos D. Gene-Environment interactions in schizophrenia: a literature review. Genes. 2021;12(12):1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rantala MJ, et al. Schizophrenia: the new etiological synthesis. Neurosci Biobehav Rev. 2022;142:104894.

    Article  CAS  PubMed  Google Scholar 

  3. McGue M. When assessing twin concordance, use the probandwise not the pairwise rate. Schizophr Bull. 1992;18(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hilker R, et al. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register. Biol Psychiat. 2018;83(6):492–8.

    Article  PubMed  Google Scholar 

  5. AP. Schizophrenia spectrum and other psychotic disorders, in diagnostic and statistical manual of mental disorders, Fifth Edition. 2013;87–123.

  6. Cardno AG, et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry. 1999;56(2):162–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait. Arch Gen Psychiatry. 2003;60(12):1187.

    Article  PubMed  Google Scholar 

  8. Cannon TD et al The genetic epidemiology of schizophrenia in a Finnish twin cohort A population-based modeling study. Arch Gen Psychiatry. 1998; 55(1): 67–74

  9. Craddock N, O’Donovan MC, Owen MJ. Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or “schizoaffective”) psychoses. Schizophr Bull. 2009;35(3):482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Kato H, Kimura H, Kushima I, Takahashi N, Aleksic B, Ozaki N. The genetic architecture of schizophrenia: review of large-scale genetic studies. J Hum Genet. 2023;68(3):175–82. https://doi.org/10.1038/s10038-022-01059-4. With regards to copy number variants, deletions at 22q11 and 3q29 are associated most strongly with schizophrenia. In further studies, neurons from patients with 22q11 deletions displayed altered protein processing in the endoplasmic reticulum.

  11. Lackey, AE, Muzio MR, DiGeorge syndrome. In: StatPearls 2022, StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC: Treasure Island (FL)

  12. • Patel H, et al. Psychiatric Comorbidities in Adults with DiGeorge Syndrome Clin Psychopharmacol Neurosci. 2022;20(3):498–503. In a sample of nearly 7,000 individuals with DGS, researchers determine that 14% had schizophrenia or another psychotic disorder. This greatly exceeds the prevalence of psychotic disorders in the general population and suggests a connection between DGS and schizophrenia.

  13. Murphy KC. Annotation: Velo-cardio-facial syndrome. J Child Psychol Psychiatry. 2005;46(6):563–71.

    Article  CAS  PubMed  Google Scholar 

  14. Bassett AS, et al. The schizophrenia phenotype in 22q11 deletion syndrome. Am J Psychiatry. 2003;160(9):1580–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Debbané M, et al. Psychotic symptoms in children and adolescents with 22q11.2 deletion syndrome: neuropsychological and behavioral implications. Schizophr Res. 2006;84(2):187–193

  16. Singh T, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci. 2016;19(4):571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marshall CR, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  18. Rees E, et al. Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry. 2014;204(2):108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  19. D’Angelo D, et al. Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. JAMA Psychiat. 2016;73(1):20

  20. O’Hora KP, et al. Neurobehavioral dimensions of Prader Willi syndrome: relationships between sleep and psychosis-risk symptoms. Front Psychiatry. 2022;13:868536.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vogels A, et al. Psychotic disorders in Prader-Willi syndrome. Am J Med Genet A. 2004;127A(3):238–43.

    Article  CAS  PubMed  Google Scholar 

  22. Kimura H, et al. A novel rare variant R292H in RTN4R affects growth cone formation and possibly contributes to schizophrenia susceptibility. Transl Psychiatry. 2017;7(8):e1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chong Z-S, et al. Metabolic contributions to neuronal deficits caused by genomic disruption of schizophrenia risk gene SETD1A. Schizophrenia. 2022;8(1). https://doi.org/10.1038/s41537-022-00326-9.

  24. Calafato MS, et al. Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. Br J Psychiatry. 2018;213(3):535–41.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brown AS, et al. Association of maternal genital and reproductive infections with verbal memory and motor deficits in adult schizophrenia. Psychiatry Res. 2011;188(2):179–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lipner E, O’Brien KJ, Pike MR, Ered A, Ellman LM. Environmental risk factors and cognitive outcomes in psychosis: Pre-, perinatal, and early life adversity. Curr Top Behav Neurosc. 2023;63:205–40. https://doi.org/10.1007/7854_2022_378.

    Article  CAS  Google Scholar 

  27. Urbonaite G, et al. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci. 2022;16:909762.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Humphrey C, et al. Childhood interpersonal trauma and paranoia in psychosis: the role of disorganised attachment and negative schema. Schizophr Res. 2022;241:142–8.

    Article  PubMed  Google Scholar 

  29. Di Forti M, et al. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study. Lancet Psychiatry. 2019;6(5):427–36.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Little R, D’Mello D. A cannabinoid hypothesis of schizophrenia: pathways to psychosis. Innov Clin Neurosci. 2022;19(7–9):38–43.

    PubMed  PubMed Central  Google Scholar 

  31. Misra S, et al. Structural racism and inequities in incidence, course of illness, and treatment of psychotic disorders among Black Americans. Am J Public Health. 2022;112(4):624–32.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hailu EM, et al. Structural racism and adverse maternal health outcomes: a systematic review. Health Place. 2022;78:102923.

    Article  PubMed  Google Scholar 

  33. Nagendra A, Black C, Penn DL. Black Americans and schizophrenia: racism as a driver of inequities in psychosis diagnosis, assessment, and treatment. Schizophr Res. 2023;253:1–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hayley Seltzberg wrote the main manuscript. Hayley Seltzberg, Jarrod Ehrie, and Eric Goldwaser reviewed the manuscript.

Corresponding author

Correspondence to Hayley Seltzberg.

Ethics declarations

Ethical Approval

Not applicable.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seltzberg, H., Ehrie, J. & Goldwaser, E. Genetics and Schizophrenia. Curr Behav Neurosci Rep (2024). https://doi.org/10.1007/s40473-024-00274-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40473-024-00274-x

Keywords

Navigation