Skip to main content

Microbiome and Schizophrenia: Current Evidence and Future Challenges

Abstract

Purpose of Review

This review aims to summarize the current evidence for the link between schizophrenia and alterations in the microbiome.

Recent Findings

Available data show microbiome alterations in patients with schizophrenia, especially in the gut microbiome compared with healthy individuals. Changes were observed in diversity, with associations noted between the microbiome and metabolic and immune pathways. However, results showed specific community structure patterns of the microbiome varied among patients with schizophrenia. The observed changes reflected disease-related processes (e.g., nicotine use), and also appeared to play a role in pathophysiology. Prebiotics and probiotics have been investigated as adjunctive strategies in the management of symptoms.

Summary

Future studies will need to control confounding factors, such as treatment, diet, and comorbidities in order to define primary (i.e., intrinsically implicated in schizophrenia pathophysiology) or secondary (e.g., to life habits) microbiome changes. Prebiotics and probiotics in clinical practice merit exploration, notably to investigate symptomatic dimensions or patient subgroups benefiting from them. This new area of investigation should prove valuable for management of patients, as well as advancing understanding of the biological basis of schizophrenia.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, et al. Schizophrenia. Nat Rev Dis Primers. 2015;1:15067. https://doi.org/10.1038/nrdp.2015.67.

    Article  PubMed  Google Scholar 

  2. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258–66. https://doi.org/10.1001/archpsyc.1995.03950160008002.

    Article  CAS  PubMed  Google Scholar 

  3. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 2000;57:237–45. https://doi.org/10.1001/archpsyc.57.3.237.

    Article  CAS  PubMed  Google Scholar 

  4. Guillozet-Bongaarts AL, Hyde TM, Dalley RA, Hawrylycz MJ, Henry A, Hof PR, et al. Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2014;19(4):478–85. https://doi.org/10.1038/mp.2013.30.

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38:950–7. https://doi.org/10.1093/schbul/sbs010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci. 2019;1437(1):57–67. https://doi.org/10.1111/nyas.13712This study provides a thorough review over the link between inflammation and neuropsychiatric disorders and its possible mechanisms.

    Article  CAS  PubMed  Google Scholar 

  7. Frydecka D, Krzystek-Korpacka M, Lubeiro A, Stramecki F, Stańczykiewicz B, Beszłej JA, et al. Profiling inflammatory signatures of schizophrenia: a cross-sectional and meta-analysis study. Brain Behav Immun. 2018;71:28–36. https://doi.org/10.1016/j.bbi.2018.05.002Indicates important inflammatory markers related to schizophrenia through a cross-sectional study and a meta-analysis.

    Article  PubMed  Google Scholar 

  8. Fraguas D, Díaz-Caneja CM, Ayora M, Hernández-Álvarez F, Rodríguez-Quiroga A, Recio S. Oxidative stress and inflammation in first-episode psychosis: a systematic review and meta-analysis. Schizophr Bull. 2019;45(4):742–51. https://doi.org/10.1093/schbul/sby125This systematic review and meta-analysis identifies inflammatory and oxidative metabolism alterations related to the onset of first-episode psychosis.

    Article  PubMed  Google Scholar 

  9. Ponferrada A, Caso JR, Alou L, Colón A, Sevillano D, Moro MA, et al. The role of PPARgamma on restoration of colonic homeostasis after experimental stress-induced inflammation and dysfunction. Gastroenterology. 2007;132:1791–803. https://doi.org/10.1053/j.gastro.2007.02.032.

    Article  CAS  PubMed  Google Scholar 

  10. Caso JR, Hurtado O, Pereira MP, García-Bueno B, Menchén L, Alou L, et al. Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am J Physiol Regul Integr Comp Physiol. 2009;296:R979–85. https://doi.org/10.1152/ajpregu.90825.2008.

    Article  CAS  PubMed  Google Scholar 

  11. Garate I, Garcia-Bueno B, Madrigal JL, Bravo L, Berrocoso E, Caso JR, et al. Origin and consequences of brain toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflam. 2011;8:151. https://doi.org/10.1186/1742-2094-8-151.

    Article  CAS  Google Scholar 

  12. • Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 2019;66(1):1–12. https://doi.org/10.18388/abp.2018_2648Provides a good description of the composition and dynamics of the human gut microbiota and some possible mechanisms of interaction between human and microbiome metabolism.

    Article  CAS  PubMed  Google Scholar 

  13. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. https://doi.org/10.1186/1471-2180-9-123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J. etal. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res. 2018;197:470–7. https://doi.org/10.1016/j.schres.2018.01.002Demonstrates possible diagnostic applications for gut microbiota characterization in schizophrenia.

    Article  PubMed  Google Scholar 

  15. Xu R, Wu B, Liang J, He F, Gu W, Li K, et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav Immun. 2019. https://doi.org/10.1016/j.bbi.2019.06.039Shows differences in richness and composition of gut microbiota and gut IgA levels of schizophrenic patients compared to healthy individuals.

  16. Nguyen TT, Kosciolek T, Maldonado Y, Daly RE, Martin AS, McDonald D, et al. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res. 2019;204:23–9. https://doi.org/10.1016/j.schres.2018.09.014Describes the composition of the gut microbiota in patients with schizophrenia and indicates differences from the composition of the microbiota from healthy individuals. Also indicates associations of specific components of the gut microbiota and symptomatic domains of schizophrenia.

    Article  PubMed  Google Scholar 

  17. Cheng S, Han B, Ding M, Wen Y, Ma M, Zhang L, et al. Identifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Brief Bioinform. 2019. https://doi.org/10.1093/bib/bbz034Provides evidence of the association between five mental disorders, including schizophrenia, and specific taxa of gut microbiota.

  18. Castro-Nallar E, Bendall ML, Pérez-Losada M, Sabuncyan S, Severance EG, Dickerson FB, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ. 2015;3:e1140. https://doi.org/10.7717/peerj.1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paisse S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion. 2016;56:1138–47. https://doi.org/10.1111/trf.13477.

    Article  CAS  PubMed  Google Scholar 

  20. Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA. Does blood of healthy subjects contain bacterial ribosomal DNA? J Clin Microbiol. 2001;39:1956–9. https://doi.org/10.1128/JCM.39.5.1956-1959.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McLaughlin RW, Vali H, Lau PC, Palfree RG, De Ciccio A, Sirois M, et al. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J Clin Microbiol. 2002;40(12):4771–5. https://doi.org/10.1128/jcm.40.12.4771-4775.2002.

    Article  PubMed  PubMed Central  Google Scholar 

  22. •• Olde Loohuis LM, Mangul S, APS O, Jospin G, Koslicki D, Yang HT, et al. Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Transl Psychiatry. 2018;8(1):96. https://doi.org/10.1038/s41398-018-0107-9This study shows a difference in diversity of microbial transcripts in the blood of schizophrenic patients compared to healthy individuals as well as to other two brain disorders. It also shows differences in the abundance of specific immune cell populations between these individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yolken RH, Severance EG, Sabunciyan S, Gressitt KL, Chen O, Stallings C, et al. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophr Bull. 2015;41(5):1153–61. https://doi.org/10.1093/schbul/sbu197.

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Doherty FD, O’Mahony SM, Peterson VL, O'Sullivan O, Crispie F, Cotter PD, et al. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain Behav Immun. 2017;68:261–73. https://doi.org/10.1016/j.bbi.2017.10.024Provides evidence in a rat experimental model of schizophrenia of the disruption of the gut-brain-axis that was induced by early life stress and produced behavioral, neurogenic and neuroimmune alterations.

    Article  Google Scholar 

  25. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JP, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6. https://doi.org/10.1073/pnas.1005963107.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oktedalen O, Lunde OC, Opstad PK, Aabakken L, Kvernebo K. Changes in the gastrointestinal mucosa after long-distance running. Scand J Gastroenterol. 1992;27(4):270–4. https://doi.org/10.3109/00365529209000073.

    Article  CAS  PubMed  Google Scholar 

  27. • Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–8. https://doi.org/10.1038/nature25979Provides evidence for the anti-microbial effect of anti-psychotic drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. •• Yuan X, Zhang P, Wang Y, Liu Y, Li X, Kumar BU, et al. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr Res. 2018;201:299–306. https://doi.org/10.1016/j.schres.2018.05.017Demonstrates the effects of the anti-psychotic drug risperidone in the composition of the gut microbiota from patients with first-episode schizophrenia.

    Article  PubMed  Google Scholar 

  29. •• Kanayama M, Hayashida M, Hashioka S, Miyaoka T, Inagaki M. Decreased clostridium abundance after electroconvulsive therapy in the gut microbiota of a patient with schizophrenia. Case Rep Psychiatry. 2019;2019:4576842. https://doi.org/10.1155/2019/4576842This case report provides evidence that electroconvulsive therapy can modulate the composition of the gut microbiota from a schizophrenic patient.

    Article  PubMed  PubMed Central  Google Scholar 

  30. •• Flowers SA, Baxter NT, Ward KM, Kraal AZ, MG MI, Schmidt TM, et al. Effects of atypical antipsychotic treatment and resistant starch supplementation on gut microbiome composition in a cohort of patients with bipolar disorder or schizophrenia. Pharmacotherapy. 2019;39(2):161–70. https://doi.org/10.1002/phar.2214This study indicates that the gut microbiome of schizophrenic patients can be modulated by starch supplementation and the use of atypical antipsychotics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187:1067–75. https://doi.org/10.1164/rccm.201210-1913OC.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McCreadie R, Macdonald E, Blacklock C, Tilak-Singh D, Wiles D, Halliday J, et al. Dietary intake of schizophrenic patients in Nithsdale, Scotland: case–control study. BMJ. 1998;317:784–5. https://doi.org/10.1136/bmj.317.7161.784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. •• Schwarz E, Maukonen J, Hyytiäinen T, Kieseppä T, Orešič M, Sabunciyan S, et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res. 2018;192:398–403. https://doi.org/10.1016/j.schres.2017.04.017Indicates associations between gut microbiota components and severity of symptoms in schizophrenia. This study also shows that gut microbiota differences predicted response to treatment of schizophrenia.

    Article  PubMed  Google Scholar 

  34. •• Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF. In schizophrenia, increased plasma IgM/IgA responses to gut commensal bacteria are associated with negative symptoms, neurocognitive impairments, and the deficit phenotype. Neurotox Res. 2019;35(3):684–98. https://doi.org/10.1007/s12640-018-9987-yIndicates that increased IgA and IgM responses to Gram-negative bacteria are significantly associated with negative symptoms in schizophrenia and contributes to altered neurocognitive performance.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94. https://doi.org/10.1016/j.bbi.2015.03.016.

    Article  PubMed  Google Scholar 

  36. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786–96. https://doi.org/10.1038/mp.2016.44.

    Article  CAS  PubMed  Google Scholar 

  37. •• Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5:eaau8317. https://doi.org/10.1126/sciadv.aau8317Through a translational approach, demonstrates that gut microbiota from schizophrenic patients has a different composition from healthy individuals and, after being transplanted to mice, also results in behavioral changes similar to experimental models of schizophrenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pyndt Jørgensen B, Krych L, Pedersen TB, Plath N, Redrobe JP, Hansen AK, et al. Investigating the long-term effect of subchronic phencyclidine-treatment on novel object recognition and the association between the gut microbiota and behavior in the animal model of schizophrenia. Physiol Behav. 2015;141:32–9. https://doi.org/10.1016/j.physbeh.2014.12.042.

    Article  CAS  PubMed  Google Scholar 

  39. Tsai YL, Lin TL, Chang CJ, Wu TR, Lai WF, Lu CC, et al. Probiotics, prebiotics and amelioration of diseases. J Biomed Sci. 2019;26(1):3. https://doi.org/10.1186/s12929-018-0493-6This review provides a comprehensive summary of the role of probiotics and probiotics in the treatment of diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nagamine T, Ido Y, Nakamura M, Okamura T. 4G-β-D-galactosylsucrose as a prebiotics may improve underweight in inpatients with schizophrenia. Biosci Microbiota Food Health. 2018;37(2):45–7. https://doi.org/10.12938/bmfh.17-016Demonstrates improvement of underweight in Japanese inpatients with schizophrenia through prebiotic supplementation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Inamura Y, Sagae T, Nakamachi K, Murayama N. Body mass index of inpatients with schizophrenia in Japan. Int J Psychiatry Med. 2012;44:171–81. https://doi.org/10.2190/PM.44.2.h.

    Article  PubMed  Google Scholar 

  42. Sun J, Wang F, Hong G, Pang M, Xu H, Li H, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett. 2016;618:159–66. https://doi.org/10.1016/j.neulet.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  43. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The international scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14. https://doi.org/10.1038/nrgastro.2014.66.

    Article  PubMed  Google Scholar 

  44. •• Okubo R, Koga M, Katsumata N, Odamaki T, Matsuyama S, Oka M, et al. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J Affect Disord. 2019;245:377–85. https://doi.org/10.1016/j.jad.2018.11.011Shows improvement in anxiety during supplementation with bifidobacterium breve A-1 in patients with schizophrenia.

    Article  PubMed  Google Scholar 

  45. Dickerson FB, Stallings C, Origoni A, Katsafanas E, Savage CL, Schweinfurth LA, et al. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: a randomized, placebo-controlled trial. Prim Care Companion CNS Disord. 2014;16(1):PCC.13m01579. https://doi.org/10.4088/PCC.13m01579.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tomasik J, Yolken RH, Bahn S, Dickerson FB. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: a randomized, placebo-controlled trial. Biomark Insights. 2015;10:47–54. https://doi.org/10.4137/BMI.S22007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage LG, et al. Probiotic normalization of Candida albicans in schizophrenia: a randomized, placebo-controlled, longitudinal pilot study. Brain Behav Immun. 2017;62:41–5. https://doi.org/10.1016/j.bbi.2016.11.019Suggests that male schizophrenic patients might benefit from probiotic supplementation by reducingC. albicansantibodies levels and improving positive symptoms.

    Article  PubMed  Google Scholar 

  48. Ghaderi A, Banafshe HR, Mirhosseini N, Moradi M, Karimi MA, Mehrzad F, et al. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry. 2019;19(1):77. https://doi.org/10.1186/s12888-019-2059-xSupplementation with combined probiotics and Vitamin D results in significant improvement in negative (but not positive) symptoms and total antioxidant capacity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES. Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry. 2005;162(4):767–73. https://doi.org/10.1176/appi.ajp.162.4.767.

    Article  PubMed  Google Scholar 

  50. Benros ME, Eaton WW, Mortensen PB. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry. 2014;75(4):300–6. https://doi.org/10.1016/j.biopsych.2013.09.023.

    Article  PubMed  Google Scholar 

  51. Leboyer M, Oliveira J, Tamouza R, Groc L. Is it time for immunopsychiatry in psychotic disorders? Psychopharmacology. 2016;233(9):1651–60. https://doi.org/10.1007/s00213-016-4266-1.

    Article  CAS  PubMed  Google Scholar 

  52. Caso JR, Balanzá-Martínez V, Palomo T, García-Bueno B. The microbiota and gut-brain axis: contributions to the immunopathogenesis of schizophrenia. Curr Pharm Des. 2016;22(40):6122–33. https://doi.org/10.2174/1381612822666160906160911.

    Article  CAS  PubMed  Google Scholar 

  53. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14. https://doi.org/10.1038/nrgastro.2009.35.

    Article  CAS  PubMed  Google Scholar 

  54. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9. https://doi.org/10.1073/pnas.0909122107.

    Article  PubMed  PubMed Central  Google Scholar 

  55. • Zhou J, He F, Yang F, Yang Z, Xie Y, Zhou S, et al. Increased stool immunoglobulin A level in children with autism spectrum disorders. Res Dev Disabil. 2018;82:90–4. https://doi.org/10.1016/j.ridd.2017.10.009Suggests IgA is an indicator of gut immune activation towards the microbiota.

    Article  PubMed  Google Scholar 

  56. Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, et al. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res. 2013;148(1–3):130–7. https://doi.org/10.1016/j.schres.2013.05.018.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sudo N. Biogenic amines: signals between commensal microbiota and gut physiology. Front Endocrinol (Lausanne). 2019;10:504. https://doi.org/10.3389/fendo.2019.00504This review describes possible mechanisms by which biogenic amines, such as serotonine, produced by the gut microbiota can influence human metabolism and physiology.

    Article  Google Scholar 

  58. Hata T, Asano Y, Yoshihara K, Kimura-Todani T, Miyata N, Zhang XT, et al. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS One. 2017;12(7):e0180745. https://doi.org/10.1371/journal.pone.0180745Provides evidence in experimental model of serotonin regulation production by gut bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frampton JE. Brexpiprazole: a review in schizophrenia. Drugs. 2019;79(2):189–200. https://doi.org/10.1007/s40265-019-1052-5Describes possible mechanisms of serotonin pathways modulation by antipsychotic drugs.

    Article  CAS  PubMed  Google Scholar 

  60. Correll CU. From receptor pharmacology to improved outcomes: individualising the selection, dosing, and switching of antipsychotics. Eur Psychiatry. 2010;25:S12–21. https://doi.org/10.1016/s0924-9338(10)71701-6.

    Article  PubMed  Google Scholar 

  61. • Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4(4):623–32. https://doi.org/10.1038/s41564-018-0337-xProvides evidence of the influence of gut bacteria in dopamine metabolism and correlations with quality of life.

    Article  CAS  PubMed  Google Scholar 

  62. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–33. https://doi.org/10.1016/j.brainres.2018.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ando T, Brown RF, Berg RD, Dunn AJ. Bacterial translocation can increase plasma corticosterone and brain catecholamine and indoleamine metabolism. Am J Physiol Regul Integr Comp Physiol. 2000;279(6):R2164–72. https://doi.org/10.1152/ajpregu.2000.279.6.R2164.

    Article  CAS  PubMed  Google Scholar 

  64. Brzozowski B, Mazur-Bialy A, Pajdo R, Kwiecien S, Bilski J, Zwolinska-Wcislo M, et al. Mechanisms by which stress affects the experimental and clinical inflammatory bowel disease (IBD): role of brain-gut axis. Curr Neuropharmacol. 2016;14(8):892–900. https://doi.org/10.2174/1570159X14666160404124127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lucio Teixeira.

Ethics declarations

Conflict of Interest

Cordeiro, Zhang, and Teixeira declare no conflict of interest. Graubics and Caldwell work at Cosmos ID, a company focused on microbiome characterization at the strain level.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Brain and Microbiome

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macedo e Cordeiro, T., Zhang, X., Graubics, K. et al. Microbiome and Schizophrenia: Current Evidence and Future Challenges. Curr Behav Neurosci Rep 7, 51–61 (2020). https://doi.org/10.1007/s40473-020-00206-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-020-00206-5

Keywords

  • Schizophrenia
  • Microbiome
  • Microbiota-gut-brain axis
  • Gut-brain axis
  • Psychosis
  • Probiotics
  • Prebiotics