Using Animal Models to Improve the Design and Application of Transcranial Electrical Stimulation in Humans

Abstract

Purpose of Review

Transcranial electrical stimulation (tES) is a non-invasive stimulation technique used for modulating brain function in humans. To help tES reach its full therapeutic potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review studies that have taken advantage of animal models to provide invaluable insight about the basic science behind tES.

Recent Findings

Animal studies are playing a key role in elucidating the mechanisms implicated in tES, defining safety limits, validating computational models, inspiring new stimulation protocols, enhancing brain function, and exploring new therapeutic applications.

Summary

Animal models provide a wealth of information that can facilitate the successful utilization of tES for clinical interventions in human subjects. To this end, tES experiments in animals should be carefully designed to maximize opportunities for applying discoveries to the treatment of human disease.

This is a preview of subscription content, log in to check access.

Abbreviations

AC:

Alternating current

ADHD:

Attention deficit hyperactivity disorder

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BDNF:

Brain-derived neurotrophic factor

DC:

Direct current

EEG:

Electroencephalography

EMG:

Electromyography

fMRI:

Functional magnetic resonance imaging

LFP:

Local field potential

M1:

Primary motor cortex

mGluR5:

Metabotropic glutamate receptor 5

MRI:

Magnetic resonance imaging

NMDA:

N-methyl-D-aspartate

S1:

Primary somatosensory cortex

tACS:

Transcranial alternating-current stimulation

tDCS:

Transcranial direct-current stimulation

tES:

Transcranial electrical stimulation

tRNS:

Transcranial random-noise stimulation

References

Papers of particular interest, published recently, have been highlighted as:• Of importance•• Of major importance

  1. 1.

    Paulus W. Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011;21(5):602–17. https://doi.org/10.1080/09602011.2011.557292.

    Article  PubMed  Google Scholar 

  2. 2.

    Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23. https://doi.org/10.1016/j.brs.2008.06.004.

  3. 3.

    Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–95. https://doi.org/10.1016/j.brs.2011.03.002.

  4. 4.

    Márquez-Ruiz J, Leal-Campanario R, Wendling F, Ruffini G, Gruart A, Delgado-García JM. Transcranial Electrical Stimulation in Animals. In: Chapter 5 - transcranial electrical stimulation in animals - Kadosh, Roi Cohen BT - the stimulated brain. San Diego: Academic Press; 2014. p. 117–44. https://doi.org/10.1016/B978-0-12-404704-4.00005-3.

  5. 5.

    Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, et al. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):333–45. https://doi.org/10.1109/TNSRE.2012.2200046.

  6. 6.

    Bikson M, Reato D, Rahman A. Cellular and Network effects of transcranial direct current stimulation: insights from animal models and brain slice. In: C M, W P, PM R, editors. Transcranial brain Stimul., 2012, p. 55–92.

  7. 7.

    Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166–85. https://doi.org/10.1152/jn.1965.28.1.166.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Hattori Y, Moriwaki A, Hori Y. Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci Lett. 1990;116(3):320–4.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Islam N, Moriwaki A, Hattori Y, Hori Y. Appearance of dark neurons following anodal polarization in the rat brain. Acta Med Okayama. 1994;48(3):123–30. https://doi.org/10.18926/AMO/31123.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Islam N, Moriwaki A, Hattori Y, Hayashi Y, Lu YF, Hori Y. C-Fos expression mediated by N-methyl-D-aspartate receptors following anodal polarization in the rat brain. Exp Neurol. 1995;133(1):25–31. https://doi.org/10.1006/exnr.1995.1004.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(Pt 1):175–90. https://doi.org/10.1113/jphysiol.2003.055772.

  16. 16.

    Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2(4):215–28, 228-3. https://doi.org/10.1016/j.brs.2009.03.007.

  17. 17.

    Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol. 2012;107(7):1881–9. https://doi.org/10.1152/jn.00715.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol. 2012;107(7):1868–80. https://doi.org/10.1152/jn.00319.2011.

  19. 19.

    Pelletier SJ, Lagace M, St-Amour I, Arsenault D, Cisbani G, Chabrat A, et al. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. Int J Neuropsychopharmacol. 2014;18(5):pyu090. https://doi.org/10.1093/ijnp/pyu090.

  20. 20.

    • Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul. 2017;10(1):51–8. https://doi.org/10.1016/j.brs.2016.10.001. Study demonstrating modulatory effects of DC stimulation on LTP and LTD in vitro.

  21. 21.

    Chakraborty D, Truong DQ, Bikson M, Kaphzan H. Neuromodulation of axon terminals. Cereb Cortex. 2017:1–9. https://doi.org/10.1093/cercor/bhx158.

  22. 22.

    • Lafon B, Rahman A, Bikson M, Parra LC. Direct current stimulation alters neuronal input/output function. Brain Stimul. 2017;10(1):36–45. https://doi.org/10.1016/j.brs.2016.08.014. A physiological explanation to the asymmetries observed in tES effects.

  23. 23.

    Márquez-Ruiz J, Leal-Campanario R, Sánchez-Campusano R, Molaee-Ardekani B, Wendling F, Miranda PC, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A. 2012;109(17):6710–5. https://doi.org/10.1073/pnas.1121147109.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bolzoni F, Pettersson L-G, Jankowska E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. J Physiol. 2013;591(13):3381–99. https://doi.org/10.1113/jphysiol.2012.244764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Rohan JG, Carhuatanta KA, McInturf SM, Miklasevich MK, Jankord R. Modulating hippocampal plasticity with in vivo brain stimulation. J Neurosci. 2015;35(37):12824–32. https://doi.org/10.1523/JNEUROSCI.2376-15.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100. https://doi.org/10.1038/ncomms11100.

  27. 27.

    Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. https://doi.org/10.1016/j.neuron.2010.03.035.

  28. 28.

    Sun Y, Lipton JO, Boyle LM, Madsen JR, Goldenberg MC, Pascual-Leone A, et al. Direct current stimulation induces mGluR5-dependent neocortical plasticity. Ann Neurol. 2016;80(2):233–46. https://doi.org/10.1002/ana.24708.

  29. 29.

    Stafford J, Brownlow ML, Qualley A, Jankord R. AMAPA Receptor translocation and phosphorylation are induced by transcranial direct current stimulation in rats. Neurobiol Learn Mem. 2017;150:36–41. https://doi.org/10.1016/j.nlm.2017.11.002.

    Article  PubMed  Google Scholar 

  30. 30.

    Holmes B, Jung SH, Lu J, Wagner JA, Rubbi L, Pellegrini M, et al. Transcriptomic modification in the cerebral cortex following noninvasive brain stimulation: RNA-sequencing approach. Neural Plast. 2016;2016:5942980. https://doi.org/10.1155/2016/5942980.

  31. 31.

    Bolzoni F, Baczyk M, Jankowska E. Subcortical effects of transcranial direct current stimulation in the rat. J Physiol. 2013;591(16):4027–42. https://doi.org/10.1113/jphysiol.2013.257063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Baczyk M, Pettersson L-G, Jankowska E. Facilitation of ipsilateral actions of corticospinal tract neurons on feline motoneurons by transcranial direct current stimulation. Eur J Neurosci. 2014;40(4):2628–40. https://doi.org/10.1111/ejn.12623.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    • Krause MR, Zanos TP, Csorba BA, Pilly PK, Choe J, Phillips ME, et al. Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain. Curr Biol. 2017;27(20):3086–3096.e3. https://doi.org/10.1016/j.cub.2017.09.020. A study in non-human primates showing that tDCS facilitates associative learning and modifies functional connectivity.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Wachter D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Kutschenko A, et al. Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol. 2011;227(2):322–7. https://doi.org/10.1016/j.expneurol.2010.12.005.

  35. 35.

    Mielke D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Rohde V, et al. Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. Neurol Res. 2013;35(10):1029–37. https://doi.org/10.1179/1743132813Y.0000000248.

  36. 36.

    Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9(5):641–61. https://doi.org/10.1016/j.brs.2016.06.004.

  37. 37.

    Kessler SK, Minhas P, Woods AJ, Rosen A, Gorman C, Bikson M. Dosage considerations for transcranial direct current stimulation in children: a computational modeling study. PLoS One. 2013;8(9):e76112. https://doi.org/10.1371/journal.pone.0076112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci. 2014;8:226. https://doi.org/10.3389/fnbeh.2014.00226.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Guarienti F, Caumo W, Shiozawa P, Cordeiro Q, Boggio PS, Bensenor IM, et al. Reducing transcranial direct current stimulation-induced erythema with skin pretreatment: considerations for sham-controlled clinical trials. Neuromodulation. 2015;18(4):261–5. https://doi.org/10.1111/ner.12230.

    Article  PubMed  Google Scholar 

  40. 40.

    Nitsche MA, Niehaus L, Hoffmann KT, Hengst S, Liebetanz D, Paulus W, et al. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin Neurophysiol. 2004;115(10):2419–23. https://doi.org/10.1016/j.clinph.2004.05.001.

  41. 41.

    Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009;120(6):1161–7. https://doi.org/10.1016/j.clinph.2009.01.022.

    Article  PubMed  Google Scholar 

  42. 42.

    Rueger MA, Keuters MH, Walberer M, Braun R, Klein R, Sparing R, et al. Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS One. 2012;7(8):e43776. https://doi.org/10.1371/journal.pone.0043776.

  43. 43.

    Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, et al. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int. 2016;2016:2715196. https://doi.org/10.1155/2016/2715196.

  44. 44.

    Gellner A-K, Reis J, Fritsch B. Glia: a neglected player in non-invasive direct current brain stimulation. Front Cell Neurosci. 2016;10:188. https://doi.org/10.3389/fncel.2016.00188.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    • Jackson MP, Truong D, Brownlow ML, Wagner JA, McKinley RA, Bikson M, et al. Safety parameter considerations of anodal transcranial direct current stimulation in rats. Brain Behav Immun. 2017;64:152–61. https://doi.org/10.1016/j.bbi.2017.04.008. Safety parameters consideration for anodal tES in a rodent model.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    •• Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169(6):1029–1041.e16. https://doi.org/10.1016/j.cell.2017.05.024. A new method for non-invasive deep-brain stimulation based on tES.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. 47.

    Rahman A, Lafon B, Bikson M. Multilevel computational models for predicting the cellular effects of noninvasive brain stimulation. Prog Brain Res. 2015;222:25–40. https://doi.org/10.1016/bs.pbr.2015.09.003.

    Article  PubMed  Google Scholar 

  48. 48.

    Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage. 2014;89:216–25. https://doi.org/10.1016/j.neuroimage.2013.12.002.

    Article  PubMed  Google Scholar 

  49. 49.

    Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. elife. 2017;6 https://doi.org/10.7554/eLife.18834.

  50. 50.

    Bikson M, Rahman A, Datta A. Computational models of transcranial direct current stimulation. Clin EEG Neurosci. 2012;43(3):176–83. https://doi.org/10.1177/1550059412445138.

    Article  PubMed  Google Scholar 

  51. 51.

    Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591(10):2563–78. https://doi.org/10.1113/jphysiol.2012.247171.

  52. 52.

    Rahman A, Toshev PK, Bikson M. Polarizing cerebellar neurons with transcranial direct current stimulation. Clin Neurophysiol. 2014;125(3):435–8. https://doi.org/10.1016/j.clinph.2013.10.003.

    Article  PubMed  Google Scholar 

  53. 53.

    Molaee-Ardekani B, Márquez-Ruiz J, Merlet I, Leal-Campanario R, Gruart A, Sánchez-Campusano R, et al. Effects of transcranial direct current stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimul. 2013;6(1):25–39. https://doi.org/10.1016/j.brs.2011.12.006.

  54. 54.

    •• Opitz A, Falchier A, Yan C-G, Yeagle EM, Linn GS, Megevand P, et al. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep. 2016;6:31236. https://doi.org/10.1038/srep31236. Important study showing direct measurements of electric fields in humans and non-human primates.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80(3):751–64. https://doi.org/10.1016/j.neuron.2013.10.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    • Márquez-Ruiz J, Ammann C, Leal-Campanario R, Ruffini G, Gruart A, Delgado-García JM. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits. Sci Rep. 2016;6:19753. https://doi.org/10.1038/srep19753. This study uses an associative learning paradigm in rabbits to demonstrate that short pulses of tACS at proper frequencies can induce tactile sensations.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:687. https://doi.org/10.3389/fnhum.2013.00687.

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Deans JK, Powell AD, Jefferys JGR. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol. 2007;583(Pt 2):555–65. https://doi.org/10.1113/jphysiol.2007.137711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Schmidt SL, Iyengar AK, Foulser AA, Boyle MR, Fröhlich F. Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul. 2014;7(6):878–89. https://doi.org/10.1016/j.brs.2014.07.033.

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010;30(34):11476–85. https://doi.org/10.1523/JNEUROSCI.5252-09.2010.

  61. 61.

    Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–43. https://doi.org/10.1016/j.neuron.2010.06.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. 62.

    Binder S, Berg K, Gasca F, Lafon B, Parra LC, Born J, et al. Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain Stimul. 2014;7(4):508–15. https://doi.org/10.1016/j.brs.2014.03.001.

  63. 63.

    Berenyi A, Belluscio M, Mao D, Buzsáki G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science. 2012;337(6095):735–7. https://doi.org/10.1126/science.1223154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. 64.

    Laczo B, Antal A, Niebergall R, Treue S, Paulus W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 2012;5(4):484–91. https://doi.org/10.1016/j.brs.2011.08.008.

    Article  PubMed  Google Scholar 

  65. 65.

    Ragert P, Vandermeeren Y, Camus M, Cohen LG. Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol. 2008;119(4):805–11. https://doi.org/10.1016/j.clinph.2007.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Joundi RA, Jenkinson N, Brittain J-S, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol. 2012;22(5):403–7. https://doi.org/10.1016/j.cub.2012.01.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. 67.

    Rroji O, van Kuyck K, Nuttin B, Wenderoth N. Anodal tDCS over the primary motor cortex facilitates long-term memory formation reflecting use-dependent plasticity. PLoS One. 2015;10(5):e0127270. https://doi.org/10.1371/journal.pone.0127270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    Ammann C, Spampinato D, Márquez-Ruiz J. Modulating motor learning through transcranial direct-current stimulation: an integrative view. Front Psychol. 2016;7:1981. https://doi.org/10.3389/fpsyg.2016.01981.

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Cambiaghi M, Teneud L, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, et al. Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation. Neuroscience. 2011;185:161–5. https://doi.org/10.1016/j.neuroscience.2011.04.022.

  70. 70.

    Chemla S, Witharana WKL, McNaughton BL. Spatiotemporal after-effects of transcranial direct current stimulation on sensory-evoked activity in rat S1: a pilot VSDI study. Curr Neurobiol. 2016;7(2):30–5.

    Google Scholar 

  71. 71.

    Schweid L, Rushmore RJ, Valero-Cabre A. Cathodal transcranial direct current stimulation on posterior parietal cortex disrupts visuo-spatial processing in the contralateral visual field. Exp Brain Res. 2008;186(3):409–17. https://doi.org/10.1007/s00221-007-1245-0.

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    Kar K, Duijnhouwer J, Krekelberg B. Transcranial alternating current stimulation attenuates neuronal adaptation. J Neurosci. 2017;37(9):2325–35. https://doi.org/10.1523/JNEUROSCI.2266-16.2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. 73.

    Cambiaghi M, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L. Brain transcranial direct current stimulation modulates motor excitability in mice. Eur J Neurosci. 2010;31(4):704–9. https://doi.org/10.1111/j.1460-9568.2010.07092.x.

    Article  PubMed  Google Scholar 

  74. 74.

    Khatoun A, Asamoah B, Mc Laughlin M. Simultaneously excitatory and inhibitory effects of transcranial alternating current stimulation revealed using selective pulse-train stimulation in the rat motor cortex. J Neurosci. 2017;37(39):9389–402. https://doi.org/10.1523/JNEUROSCI.1390-17.2017.

    Article  PubMed  CAS  Google Scholar 

  75. 75.

    Baczyk M, Jankowska E. Presynaptic actions of transcranial and local direct current stimulation in the red nucleus. J Physiol. 2014;592(19):4313–28. https://doi.org/10.1113/jphysiol.2014.276691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. 76.

    Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol. 2011;24(6):590–6. https://doi.org/10.1097/WCO.0b013e32834c3db0.

    Article  PubMed  Google Scholar 

  77. 77.

    Sesack SR, Deutch AY, Roth RH, Bunney BS. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol. 1989;290(2):213–42. https://doi.org/10.1002/cne.902900205.

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Gorelova N, Yang CR. The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience. 1997;76(3):689–706.

    Article  PubMed  CAS  Google Scholar 

  79. 79.

    Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim S-Y, et al. A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–32.

  80. 80.

    Churchwell JC, Morris AM, Musso ND, Kesner RP. Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol Learn Mem. 2010;93(3):415–21. https://doi.org/10.1016/j.nlm.2009.12.008.

    Article  PubMed  Google Scholar 

  81. 81.

    Dockery CA, Liebetanz D, Birbaumer N, Malinowska M, Wesierska MJ. Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol Learn Mem. 2011;96(3):452–60. https://doi.org/10.1016/j.nlm.2011.06.018.

    Article  PubMed  Google Scholar 

  82. 82.

    Pedron S, Monnin J, Haffen E, Sechter D, Van Waes V. Repeated transcranial direct current stimulation prevents abnormal behaviors associated with abstinence from chronic nicotine consumption. Neuropsychopharmacology. 2014;39(4):981–8. https://doi.org/10.1038/npp.2013.298.

    Article  PubMed  CAS  Google Scholar 

  83. 83.

    Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988;31(1):47–59.

    Article  PubMed  CAS  Google Scholar 

  84. 84.

    Binder S, Rawohl J, Born J, Marshall L. Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci. 2013;7:220. https://doi.org/10.3389/fnbeh.2013.00220.

    PubMed  Article  Google Scholar 

  85. 85.

    Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005;6(2):119–30. https://doi.org/10.1038/nrn1607.

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Leon WC, Bruno MA, Allard S, Nader K, Cuello AC. Engagement of the PFC in consolidation and recall of recent spatial memory. Learn Mem. 2010;17(6):297–305. https://doi.org/10.1101/lm.1804410.

    Article  PubMed  CAS  Google Scholar 

  87. 87.

    Faraji J, Gomez-Palacio-Schjetnan A, Luczak A, Metz GA. Beyond the silence: bilateral somatosensory stimulation enhances skilled movement quality and neural density in intact behaving rats. Behav Brain Res. 2013;253:78–89. https://doi.org/10.1016/j.bbr.2013.07.022.

    Article  PubMed  Google Scholar 

  88. 88.

    Bennabi D, Pedron S, Haffen E, Monnin J, Peterschmitt Y, Van Waes V. Transcranial direct current stimulation for memory enhancement: from clinical research to animal models. Front Syst Neurosci. 2014;8:159.

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Yoon KJ, Oh B-M, Kim D-Y. Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res. 2012;1452:61–72. https://doi.org/10.1016/j.brainres.2012.02.062.

    Article  PubMed  CAS  Google Scholar 

  90. 90.

    Jiang T, Xu RX, Zhang AW, Di W, Xiao ZJ, Miao JY, et al. Effects of transcranial direct current stimulation on hemichannel pannexin-1 and neural plasticity in rat model of cerebral infarction. Neuroscience. 2012;226(Supplement C):421–6. https://doi.org/10.1016/j.neuroscience.2012.09.035.

    Article  PubMed  CAS  Google Scholar 

  91. 91.

    • Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol. 2016;279:127–36. https://doi.org/10.1016/j.expneurol.2016.02.018. Multiple benefits of both anodal and cathodal tDCS induced through multifaceted mechanisms in a rat model of stroke.

    Article  PubMed  Google Scholar 

  92. 92.

    Peruzzotti-Jametti L, Cambiaghi M, Bacigaluppi M, Gallizioli M, Gaude E, Mari S, et al. Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke. Stroke. 2013;44(11):3166–74. https://doi.org/10.1161/STROKEAHA.113.001687.

  93. 93.

    Yoon KJ, Lee Y-T, Chae SW, Park CR, Kim DY. Effects of anodal transcranial direct current stimulation (tDCS) on behavioral and spatial memory during the early stage of traumatic brain injury in the rats. J Neurol Sci. 2016;362:314–20. https://doi.org/10.1016/j.jns.2016.02.005.

    Article  PubMed  Google Scholar 

  94. 94.

    Kim HJ, Han SJ. Anodal transcranial direct current stimulation provokes neuroplasticity in repetitive mild traumatic brain injury in rats. Neural Plast. 2017;2017:1372946. https://doi.org/10.1155/2017/1372946.

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Notturno F, Pace M, Zappasodi F, Cam E, Bassetti CL, Uncini A. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model. J Neurol Sci. 2014;342(1–2):146–51. https://doi.org/10.1016/j.jns.2014.05.017.

    Article  PubMed  Google Scholar 

  96. 96.

    Liu Y-H, Chan SJ, Pan H-C, Bandla A, King NKK, Wong PTH, et al. Integrated treatment modality of cathodal-transcranial direct current stimulation with peripheral sensory stimulation affords neuroprotection in a rat stroke model. Neurophotonics. 2017;4(4):45002. https://doi.org/10.1117/1.NPh.4.4.045002.

  97. 97.

    Keuters MH, Aswendt M, Tennstaedt A, Wiedermann D, Pikhovych A, Rotthues S, et al. Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain. NMR Biomed. 2015;28(2):231–9. https://doi.org/10.1002/nbm.3244.

  98. 98.

    Stoll G, Jander S, Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol. 2002;513:87–113.

    PubMed  CAS  Google Scholar 

  99. 99.

    Millan MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999;57(1):1–164.

    Article  PubMed  CAS  Google Scholar 

  100. 100.

    Laste G, Caumo W, Adachi LNS, Rozisky JR, de Macedo IC, Filho PRM, et al. After-effects of consecutive sessions of transcranial direct current stimulation (tDCS) in a rat model of chronic inflammation. Exp Brain Res. 2012;221(1):75–83. https://doi.org/10.1007/s00221-012-3149-x.

  101. 101.

    Lima MC, Fregni F. Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology. 2008;70(24):2329–37. https://doi.org/10.1212/01.wnl.0000314649.38527.93.

    Article  PubMed  Google Scholar 

  102. 102.

    Nekhendzy V, Fender CP, Davies MF, Lemmens HJM, Kim MS, Bouley DM, et al. The antinociceptive effect of transcranial electrostimulation with combined direct and alternating current in freely moving rats. Anesth Analg. 2004;98(3):730–7. table of contents

    Article  PubMed  Google Scholar 

  103. 103.

    Spezia Adachi LN, Caumo W, Laste G, Fernandes Medeiros L, Ripoll Rozisky J, de Souza A, et al. Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Res. 2012;1489:17–26. https://doi.org/10.1016/j.brainres.2012.10.009.

  104. 104.

    Fregni F, Macedo IC, Spezia-Adachi LN, Scarabelot VL, Laste G, Souza A, et al. Transcranial direct current stimulation (tDCS) prevents chronic stress-induced hyperalgesia in rats. Brain Stimul. 2017;11:299–301. https://doi.org/10.1016/j.brs.2017.11.009.

  105. 105.

    da Silva Moreira SF, Medeiros LF, de Souza A, de Oliveira C, Scarabelot VL, Fregni F, et al. Transcranial direct current stimulation (tDCS) neuromodulatory effects on mechanical hyperalgesia and cortical BDNF levels in ovariectomized rats. Life Sci. 2016;145:233–9. https://doi.org/10.1016/j.lfs.2015.10.011.

  106. 106.

    Dimov LF, Franciosi AC, Campos ACP, Brunoni AR, Pagano RL. Top-down effect of direct current stimulation on the nociceptive response of rats. PLoS One. 2016;11(4):e0153506. https://doi.org/10.1371/journal.pone.0153506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. 107.

    de Souza A, Martins DF, Fernandes Medeiros L, Nucci C, Cesar Martins T, Siteneski A, et al. Neurobiological mechanisms of antiallodynic effect of transcranial direct current stimulation (tDCS) in a mice model of neuropathic pain. Brain Res. 2017;1682:14–23. https://doi.org/10.1016/j.brainres.2017.12.005.

    Article  PubMed  Google Scholar 

  108. 108.

    Cioato SG, Medeiros LF, Marques Filho PR, Vercelino R, de Souza A, Scarabelot VL, et al. Long-lasting effect of transcranial direct current stimulation in the reversal of hyperalgesia and cytokine alterations induced by the neuropathic pain model. Brain Stimul. 2016;9(2):209–17. https://doi.org/10.1016/j.brs.2015.12.001.

  109. 109.

    Filho PRM, Vercelino R, Cioato SG, Medeiros LF, de Oliveira C, Scarabelot VL, et al. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: long-lasting effect. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:44–51. https://doi.org/10.1016/j.pnpbp.2015.06.016.

    Article  CAS  Google Scholar 

  110. 110.

    Wen H-Z, Gao S-H, Zhao Y-D, He W-J, Tian X-L, Ruan H-Z. Parameter optimization analysis of prolonged analgesia effect of tDCS on neuropathic pain rats. Front Behav Neurosci. 2017;11:115. https://doi.org/10.3389/fnbeh.2017.00115.

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Lefaucheur J-P. A comprehensive database of published tDCS clinical trials (2005–2016). Neurophysiol Clin. 2016;46(6):319–98. https://doi.org/10.1016/j.neucli.2016.10.002.

    Article  PubMed  Google Scholar 

  112. 112.

    Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, et al. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol. 2016;127(11):3425–54. https://doi.org/10.1016/j.clinph.2016.08.016.

  113. 113.

    Pedron S, Beverley J, Haffen E, Andrieu P, Steiner H, Van Waes V. Transcranial direct current stimulation produces long-lasting attenuation of cocaine-induced behavioral responses and gene regulation in corticostriatal circuits. Addict Biol. 2017;22(5):1267–78. https://doi.org/10.1111/adb.12415.

    Article  PubMed  CAS  Google Scholar 

  114. 114.

    Macedo IC, de Oliveira C, Vercelino R, Souza A, Laste G, Medeiros LF, et al. Repeated transcranial direct current stimulation reduces food craving in Wistar rats. Appetite. 2016;103:29–37. https://doi.org/10.1016/j.appet.2016.03.014.

  115. 115.

    Peanlikhit T, Van Waes V, Pedron S, Risold P-Y, Haffen E, Etievant A, et al. The antidepressant-like effect of tDCS in mice: a behavioral and neurobiological characterization. Brain Stimul. 2017;10(4):748–56. https://doi.org/10.1016/j.brs.2017.03.012.

    Article  PubMed  Google Scholar 

  116. 116.

    • Monai H, Hirase H. Astrocytic calcium activation in a mouse model of tDCS-extended discussion. Neurogenes (Austin, Tex). 2016;3(1):e1240055. https://doi.org/10.1080/23262133.2016.1240055. One of the first studies showing glial implication in tDCS-induced plasticity in mice.

    CAS  Article  Google Scholar 

  117. 117.

    Leffa DT, de Souza A, Scarabelot VL, Medeiros LF, de Oliveira C, Grevet EH, et al. Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol. 2016;26(2):368–77. https://doi.org/10.1016/j.euroneuro.2015.11.012.

  118. 118.

    Chang W-P, Lu H-C, Shyu B-C. Treatment with direct-current stimulation against cingulate seizure-like activity induced by 4-aminopyridine and bicuculline in an in vitro mouse model. Exp Neurol. 2015;265:180–92. https://doi.org/10.1016/j.expneurol.2015.02.002.

    Article  PubMed  Google Scholar 

  119. 119.

    Zobeiri M, van Luijtelaar G. Noninvasive transcranial direct current stimulation in a genetic absence model. Epilepsy Behav. 2013;26(1):42–50. https://doi.org/10.1016/j.yebeh.2012.10.018.

    Article  PubMed  CAS  Google Scholar 

  120. 120.

    Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, et al. Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia. 2006;47(7):1216–24. https://doi.org/10.1111/j.1528-1167.2006.00539.x.

  121. 121.

    Kamida T, Kong S, Eshima N, Abe T, Fujiki M, Kobayashi H. Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats. Behav Brain Res. 2011;217(1):99–103. https://doi.org/10.1016/j.bbr.2010.08.050.

    Article  PubMed  Google Scholar 

  122. 122.

    Kamida T, Kong S, Eshima N, Fujiki M. Cathodal transcranial direct current stimulation affects seizures and cognition in fully amygdala-kindled rats. Neurol Res. 2013;35(6):602–7. https://doi.org/10.1179/1743132813Y.0000000170.

    Article  PubMed  Google Scholar 

  123. 123.

    Dhamne SC, Ekstein D, Zhuo Z, Gersner R, Zurakowski D, Loddenkemper T, et al. Acute seizure suppression by transcranial direct current stimulation in rats. Ann Clin Transl Neurol. 2015;2(8):843–56. https://doi.org/10.1002/acn3.226.

  124. 124.

    Rushmore RJ, DeSimone C, Valero-Cabre A. Multiple sessions of transcranial direct current stimulation to the intact hemisphere improves visual function after unilateral ablation of visual cortex. Eur J Neurosci. 2013;38(12):3799–807. https://doi.org/10.1111/ejn.12373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. 125.

    Wu Y-J, Lin C-C, Yeh C-M, Chien M-E, Tsao M-C, Tseng P, et al. Repeated transcranial direct current stimulation improves cognitive dysfunction and synaptic plasticity deficit in the prefrontal cortex of streptozotocin-induced diabetic rats. Brain Stimul. 2017;10(6):1079–87. https://doi.org/10.1016/j.brs.2017.08.007.

  126. 126.

    Yu SH, Park SD, Sim KC. The effect of tDCS on cognition and neurologic recovery of rats with Alzheimer’s disease. J Phys Ther Sci. 2014;26(2):247–9. https://doi.org/10.1589/jpts.26.247.

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Yu X, Li Y, Wen H, Zhang Y, Tian X. Intensity-dependent effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer’s disease. Neurobiol Learn Mem. 2015;123:168–78. https://doi.org/10.1016/j.nlm.2015.06.003.

    Article  PubMed  Google Scholar 

  128. 128.

    Li Y, Tian X, Qian L, Yu X, Jiang W. Anodal transcranial direct current stimulation relieves the unilateral bias of a rat model of Parkinson’s disease. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2011;2011:765–8. https://doi.org/10.1109/IEMBS.2011.6090175.

    Article  Google Scholar 

  129. 129.

    Li H, Lei X, Yan T, Li H, Huang B, Li L, et al. The temporary and accumulated effects of transcranial direct current stimulation for the treatment of advanced Parkinson’s disease monkeys. Sci Rep. 2015;5:12178. https://doi.org/10.1038/srep12178.

  130. 130.

    Lu C, Wei Y, Hu R, Wang Y, Li K, Li X. Transcranial direct current stimulation ameliorates behavioral deficits and reduces oxidative stress in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Neuromodulation. 2015;18(6):442–6; discussion 447. https://doi.org/10.1111/ner.12302.

    Article  PubMed  Google Scholar 

  131. 131.

    Tanaka T, Takano Y, Tanaka S, Hironaka N, Kobayashi K, Hanakawa T, et al. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Front Syst Neurosci. 2013;7:6. https://doi.org/10.3389/fnsys.2013.00006.

  132. 132.

    •• Winkler C, Reis J, Hoffmann N, Gellner A-K, Munkel C, Curado MR, et al. Anodal transcranial direct current stimulation enhances survival and integration of dopaminergic cell transplants in a rat Parkinson model. eNeuro. 2017;4(5) https://doi.org/10.1523/ENEURO.0063-17.2017. First study to prove beneficial effects of anodal tDCS on survival and reinnervation of dopaminergic cell transplants in a rat Parkinson model.

Download references

Funding

This work was supported by grants from the Spanish MINECO-FEDER (BFU2014–53820-P) to JMR and from the US National Institutes of Health (RF1 MH114269) to JFM and JMR. Dr. Sánchez León reports grants from FPU13/04858, during the conduct of the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier Márquez-Ruiz.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuromodulation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-León, C.A., Ammann, C., Medina, J.F. et al. Using Animal Models to Improve the Design and Application of Transcranial Electrical Stimulation in Humans. Curr Behav Neurosci Rep 5, 125–135 (2018). https://doi.org/10.1007/s40473-018-0149-6

Download citation

Keywords

  • Transcranial electrical stimulation
  • tDCS
  • Brain stimulation
  • Neuromodulation
  • Animal models
  • Plasticity