Advertisement

Current Behavioral Neuroscience Reports

, Volume 5, Issue 2, pp 125–135 | Cite as

Using Animal Models to Improve the Design and Application of Transcranial Electrical Stimulation in Humans

  • Carlos A. Sánchez-León
  • Claudia Ammann
  • Javier F. Medina
  • Javier Márquez-RuizEmail author
Neuromodulation (C Stagg, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuromodulation

Abstract

Purpose of Review

Transcranial electrical stimulation (tES) is a non-invasive stimulation technique used for modulating brain function in humans. To help tES reach its full therapeutic potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review studies that have taken advantage of animal models to provide invaluable insight about the basic science behind tES.

Recent Findings

Animal studies are playing a key role in elucidating the mechanisms implicated in tES, defining safety limits, validating computational models, inspiring new stimulation protocols, enhancing brain function, and exploring new therapeutic applications.

Summary

Animal models provide a wealth of information that can facilitate the successful utilization of tES for clinical interventions in human subjects. To this end, tES experiments in animals should be carefully designed to maximize opportunities for applying discoveries to the treatment of human disease.

Keywords

Transcranial electrical stimulation tDCS Brain stimulation Neuromodulation Animal models Plasticity 

Abbreviations

AC

Alternating current

ADHD

Attention deficit hyperactivity disorder

AMPA

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BDNF

Brain-derived neurotrophic factor

DC

Direct current

EEG

Electroencephalography

EMG

Electromyography

fMRI

Functional magnetic resonance imaging

LFP

Local field potential

M1

Primary motor cortex

mGluR5

Metabotropic glutamate receptor 5

MRI

Magnetic resonance imaging

NMDA

N-methyl-D-aspartate

S1

Primary somatosensory cortex

tACS

Transcranial alternating-current stimulation

tDCS

Transcranial direct-current stimulation

tES

Transcranial electrical stimulation

tRNS

Transcranial random-noise stimulation

Notes

Funding

This work was supported by grants from the Spanish MINECO-FEDER (BFU2014–53820-P) to JMR and from the US National Institutes of Health (RF1 MH114269) to JFM and JMR. Dr. Sánchez León reports grants from FPU13/04858, during the conduct of the study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as:• Of importance•• Of major importance

  1. 1.
    Paulus W. Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011;21(5):602–17.  https://doi.org/10.1080/09602011.2011.557292.CrossRefPubMedGoogle Scholar
  2. 2.
    Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.  https://doi.org/10.1016/j.brs.2008.06.004.
  3. 3.
    Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–95.  https://doi.org/10.1016/j.brs.2011.03.002.
  4. 4.
    Márquez-Ruiz J, Leal-Campanario R, Wendling F, Ruffini G, Gruart A, Delgado-García JM. Transcranial Electrical Stimulation in Animals. In: Chapter 5 - transcranial electrical stimulation in animals - Kadosh, Roi Cohen BT - the stimulated brain. San Diego: Academic Press; 2014. p. 117–44.  https://doi.org/10.1016/B978-0-12-404704-4.00005-3.
  5. 5.
    Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, et al. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):333–45.  https://doi.org/10.1109/TNSRE.2012.2200046.
  6. 6.
    Bikson M, Reato D, Rahman A. Cellular and Network effects of transcranial direct current stimulation: insights from animal models and brain slice. In: C M, W P, PM R, editors. Transcranial brain Stimul., 2012, p. 55–92.Google Scholar
  7. 7.
    Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166–85.  https://doi.org/10.1152/jn.1965.28.1.166.CrossRefPubMedGoogle Scholar
  10. 10.
    Hattori Y, Moriwaki A, Hori Y. Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci Lett. 1990;116(3):320–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Islam N, Moriwaki A, Hattori Y, Hori Y. Appearance of dark neurons following anodal polarization in the rat brain. Acta Med Okayama. 1994;48(3):123–30.  https://doi.org/10.18926/AMO/31123. PubMedCrossRefGoogle Scholar
  12. 12.
    Islam N, Moriwaki A, Hattori Y, Hayashi Y, Lu YF, Hori Y. C-Fos expression mediated by N-methyl-D-aspartate receptors following anodal polarization in the rat brain. Exp Neurol. 1995;133(1):25–31.  https://doi.org/10.1006/exnr.1995.1004.CrossRefPubMedGoogle Scholar
  13. 13.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901.CrossRefPubMedGoogle Scholar
  15. 15.
    Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(Pt 1):175–90.  https://doi.org/10.1113/jphysiol.2003.055772.
  16. 16.
    Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2(4):215–28, 228-3.  https://doi.org/10.1016/j.brs.2009.03.007.
  17. 17.
    Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol. 2012;107(7):1881–9.  https://doi.org/10.1152/jn.00715.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol. 2012;107(7):1868–80.  https://doi.org/10.1152/jn.00319.2011.
  19. 19.
    Pelletier SJ, Lagace M, St-Amour I, Arsenault D, Cisbani G, Chabrat A, et al. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. Int J Neuropsychopharmacol. 2014;18(5):pyu090.  https://doi.org/10.1093/ijnp/pyu090.
  20. 20.
    • Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul. 2017;10(1):51–8.  https://doi.org/10.1016/j.brs.2016.10.001. Study demonstrating modulatory effects of DC stimulation on LTP and LTD in vitro.
  21. 21.
    Chakraborty D, Truong DQ, Bikson M, Kaphzan H. Neuromodulation of axon terminals. Cereb Cortex. 2017:1–9.  https://doi.org/10.1093/cercor/bhx158.
  22. 22.
    • Lafon B, Rahman A, Bikson M, Parra LC. Direct current stimulation alters neuronal input/output function. Brain Stimul. 2017;10(1):36–45.  https://doi.org/10.1016/j.brs.2016.08.014. A physiological explanation to the asymmetries observed in tES effects.
  23. 23.
    Márquez-Ruiz J, Leal-Campanario R, Sánchez-Campusano R, Molaee-Ardekani B, Wendling F, Miranda PC, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A. 2012;109(17):6710–5.  https://doi.org/10.1073/pnas.1121147109.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bolzoni F, Pettersson L-G, Jankowska E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. J Physiol. 2013;591(13):3381–99.  https://doi.org/10.1113/jphysiol.2012.244764.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rohan JG, Carhuatanta KA, McInturf SM, Miklasevich MK, Jankord R. Modulating hippocampal plasticity with in vivo brain stimulation. J Neurosci. 2015;35(37):12824–32.  https://doi.org/10.1523/JNEUROSCI.2376-15.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100.  https://doi.org/10.1038/ncomms11100.
  27. 27.
    Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204.  https://doi.org/10.1016/j.neuron.2010.03.035.
  28. 28.
    Sun Y, Lipton JO, Boyle LM, Madsen JR, Goldenberg MC, Pascual-Leone A, et al. Direct current stimulation induces mGluR5-dependent neocortical plasticity. Ann Neurol. 2016;80(2):233–46.  https://doi.org/10.1002/ana.24708.
  29. 29.
    Stafford J, Brownlow ML, Qualley A, Jankord R. AMAPA Receptor translocation and phosphorylation are induced by transcranial direct current stimulation in rats. Neurobiol Learn Mem. 2017;150:36–41.  https://doi.org/10.1016/j.nlm.2017.11.002. CrossRefPubMedGoogle Scholar
  30. 30.
    Holmes B, Jung SH, Lu J, Wagner JA, Rubbi L, Pellegrini M, et al. Transcriptomic modification in the cerebral cortex following noninvasive brain stimulation: RNA-sequencing approach. Neural Plast. 2016;2016:5942980.  https://doi.org/10.1155/2016/5942980.
  31. 31.
    Bolzoni F, Baczyk M, Jankowska E. Subcortical effects of transcranial direct current stimulation in the rat. J Physiol. 2013;591(16):4027–42.  https://doi.org/10.1113/jphysiol.2013.257063.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Baczyk M, Pettersson L-G, Jankowska E. Facilitation of ipsilateral actions of corticospinal tract neurons on feline motoneurons by transcranial direct current stimulation. Eur J Neurosci. 2014;40(4):2628–40.  https://doi.org/10.1111/ejn.12623.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    • Krause MR, Zanos TP, Csorba BA, Pilly PK, Choe J, Phillips ME, et al. Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain. Curr Biol. 2017;27(20):3086–3096.e3.  https://doi.org/10.1016/j.cub.2017.09.020. A study in non-human primates showing that tDCS facilitates associative learning and modifies functional connectivity. CrossRefPubMedGoogle Scholar
  34. 34.
    Wachter D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Kutschenko A, et al. Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol. 2011;227(2):322–7.  https://doi.org/10.1016/j.expneurol.2010.12.005.
  35. 35.
    Mielke D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Rohde V, et al. Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. Neurol Res. 2013;35(10):1029–37.  https://doi.org/10.1179/1743132813Y.0000000248.
  36. 36.
    Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9(5):641–61.  https://doi.org/10.1016/j.brs.2016.06.004.
  37. 37.
    Kessler SK, Minhas P, Woods AJ, Rosen A, Gorman C, Bikson M. Dosage considerations for transcranial direct current stimulation in children: a computational modeling study. PLoS One. 2013;8(9):e76112.  https://doi.org/10.1371/journal.pone.0076112.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci. 2014;8:226.  https://doi.org/10.3389/fnbeh.2014.00226.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Guarienti F, Caumo W, Shiozawa P, Cordeiro Q, Boggio PS, Bensenor IM, et al. Reducing transcranial direct current stimulation-induced erythema with skin pretreatment: considerations for sham-controlled clinical trials. Neuromodulation. 2015;18(4):261–5.  https://doi.org/10.1111/ner.12230.CrossRefPubMedGoogle Scholar
  40. 40.
    Nitsche MA, Niehaus L, Hoffmann KT, Hengst S, Liebetanz D, Paulus W, et al. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin Neurophysiol. 2004;115(10):2419–23.  https://doi.org/10.1016/j.clinph.2004.05.001.
  41. 41.
    Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009;120(6):1161–7.  https://doi.org/10.1016/j.clinph.2009.01.022.CrossRefPubMedGoogle Scholar
  42. 42.
    Rueger MA, Keuters MH, Walberer M, Braun R, Klein R, Sparing R, et al. Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS One. 2012;7(8):e43776.  https://doi.org/10.1371/journal.pone.0043776.
  43. 43.
    Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, et al. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int. 2016;2016:2715196.  https://doi.org/10.1155/2016/2715196.
  44. 44.
    Gellner A-K, Reis J, Fritsch B. Glia: a neglected player in non-invasive direct current brain stimulation. Front Cell Neurosci. 2016;10:188.  https://doi.org/10.3389/fncel.2016.00188.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    • Jackson MP, Truong D, Brownlow ML, Wagner JA, McKinley RA, Bikson M, et al. Safety parameter considerations of anodal transcranial direct current stimulation in rats. Brain Behav Immun. 2017;64:152–61.  https://doi.org/10.1016/j.bbi.2017.04.008. Safety parameters consideration for anodal tES in a rodent model. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    •• Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169(6):1029–1041.e16.  https://doi.org/10.1016/j.cell.2017.05.024. A new method for non-invasive deep-brain stimulation based on tES. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rahman A, Lafon B, Bikson M. Multilevel computational models for predicting the cellular effects of noninvasive brain stimulation. Prog Brain Res. 2015;222:25–40.  https://doi.org/10.1016/bs.pbr.2015.09.003.CrossRefPubMedGoogle Scholar
  48. 48.
    Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage. 2014;89:216–25.  https://doi.org/10.1016/j.neuroimage.2013.12.002.CrossRefPubMedGoogle Scholar
  49. 49.
    Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. elife. 2017;6  https://doi.org/10.7554/eLife.18834.
  50. 50.
    Bikson M, Rahman A, Datta A. Computational models of transcranial direct current stimulation. Clin EEG Neurosci. 2012;43(3):176–83.  https://doi.org/10.1177/1550059412445138.CrossRefPubMedGoogle Scholar
  51. 51.
    Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591(10):2563–78.  https://doi.org/10.1113/jphysiol.2012.247171.
  52. 52.
    Rahman A, Toshev PK, Bikson M. Polarizing cerebellar neurons with transcranial direct current stimulation. Clin Neurophysiol. 2014;125(3):435–8.  https://doi.org/10.1016/j.clinph.2013.10.003.CrossRefPubMedGoogle Scholar
  53. 53.
    Molaee-Ardekani B, Márquez-Ruiz J, Merlet I, Leal-Campanario R, Gruart A, Sánchez-Campusano R, et al. Effects of transcranial direct current stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimul. 2013;6(1):25–39.  https://doi.org/10.1016/j.brs.2011.12.006.
  54. 54.
    •• Opitz A, Falchier A, Yan C-G, Yeagle EM, Linn GS, Megevand P, et al. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep. 2016;6:31236.  https://doi.org/10.1038/srep31236. Important study showing direct measurements of electric fields in humans and non-human primates. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80(3):751–64.  https://doi.org/10.1016/j.neuron.2013.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    • Márquez-Ruiz J, Ammann C, Leal-Campanario R, Ruffini G, Gruart A, Delgado-García JM. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits. Sci Rep. 2016;6:19753.  https://doi.org/10.1038/srep19753. This study uses an associative learning paradigm in rabbits to demonstrate that short pulses of tACS at proper frequencies can induce tactile sensations. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:687.  https://doi.org/10.3389/fnhum.2013.00687.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Deans JK, Powell AD, Jefferys JGR. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol. 2007;583(Pt 2):555–65.  https://doi.org/10.1113/jphysiol.2007.137711.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Schmidt SL, Iyengar AK, Foulser AA, Boyle MR, Fröhlich F. Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul. 2014;7(6):878–89.  https://doi.org/10.1016/j.brs.2014.07.033.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010;30(34):11476–85.  https://doi.org/10.1523/JNEUROSCI.5252-09.2010.
  61. 61.
    Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–43.  https://doi.org/10.1016/j.neuron.2010.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Binder S, Berg K, Gasca F, Lafon B, Parra LC, Born J, et al. Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain Stimul. 2014;7(4):508–15.  https://doi.org/10.1016/j.brs.2014.03.001.
  63. 63.
    Berenyi A, Belluscio M, Mao D, Buzsáki G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science. 2012;337(6095):735–7.  https://doi.org/10.1126/science.1223154.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Laczo B, Antal A, Niebergall R, Treue S, Paulus W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 2012;5(4):484–91.  https://doi.org/10.1016/j.brs.2011.08.008.CrossRefPubMedGoogle Scholar
  65. 65.
    Ragert P, Vandermeeren Y, Camus M, Cohen LG. Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol. 2008;119(4):805–11.  https://doi.org/10.1016/j.clinph.2007.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Joundi RA, Jenkinson N, Brittain J-S, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol. 2012;22(5):403–7.  https://doi.org/10.1016/j.cub.2012.01.024.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rroji O, van Kuyck K, Nuttin B, Wenderoth N. Anodal tDCS over the primary motor cortex facilitates long-term memory formation reflecting use-dependent plasticity. PLoS One. 2015;10(5):e0127270.  https://doi.org/10.1371/journal.pone.0127270.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ammann C, Spampinato D, Márquez-Ruiz J. Modulating motor learning through transcranial direct-current stimulation: an integrative view. Front Psychol. 2016;7:1981.  https://doi.org/10.3389/fpsyg.2016.01981.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Cambiaghi M, Teneud L, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, et al. Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation. Neuroscience. 2011;185:161–5.  https://doi.org/10.1016/j.neuroscience.2011.04.022.
  70. 70.
    Chemla S, Witharana WKL, McNaughton BL. Spatiotemporal after-effects of transcranial direct current stimulation on sensory-evoked activity in rat S1: a pilot VSDI study. Curr Neurobiol. 2016;7(2):30–5.Google Scholar
  71. 71.
    Schweid L, Rushmore RJ, Valero-Cabre A. Cathodal transcranial direct current stimulation on posterior parietal cortex disrupts visuo-spatial processing in the contralateral visual field. Exp Brain Res. 2008;186(3):409–17.  https://doi.org/10.1007/s00221-007-1245-0.CrossRefPubMedGoogle Scholar
  72. 72.
    Kar K, Duijnhouwer J, Krekelberg B. Transcranial alternating current stimulation attenuates neuronal adaptation. J Neurosci. 2017;37(9):2325–35.  https://doi.org/10.1523/JNEUROSCI.2266-16.2016.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cambiaghi M, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L. Brain transcranial direct current stimulation modulates motor excitability in mice. Eur J Neurosci. 2010;31(4):704–9.  https://doi.org/10.1111/j.1460-9568.2010.07092.x.CrossRefPubMedGoogle Scholar
  74. 74.
    Khatoun A, Asamoah B, Mc Laughlin M. Simultaneously excitatory and inhibitory effects of transcranial alternating current stimulation revealed using selective pulse-train stimulation in the rat motor cortex. J Neurosci. 2017;37(39):9389–402.  https://doi.org/10.1523/JNEUROSCI.1390-17.2017.CrossRefPubMedGoogle Scholar
  75. 75.
    Baczyk M, Jankowska E. Presynaptic actions of transcranial and local direct current stimulation in the red nucleus. J Physiol. 2014;592(19):4313–28.  https://doi.org/10.1113/jphysiol.2014.276691.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol. 2011;24(6):590–6.  https://doi.org/10.1097/WCO.0b013e32834c3db0.CrossRefPubMedGoogle Scholar
  77. 77.
    Sesack SR, Deutch AY, Roth RH, Bunney BS. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol. 1989;290(2):213–42.  https://doi.org/10.1002/cne.902900205.CrossRefPubMedGoogle Scholar
  78. 78.
    Gorelova N, Yang CR. The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience. 1997;76(3):689–706.CrossRefPubMedGoogle Scholar
  79. 79.
    Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim S-Y, et al. A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–32.Google Scholar
  80. 80.
    Churchwell JC, Morris AM, Musso ND, Kesner RP. Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol Learn Mem. 2010;93(3):415–21.  https://doi.org/10.1016/j.nlm.2009.12.008.CrossRefPubMedGoogle Scholar
  81. 81.
    Dockery CA, Liebetanz D, Birbaumer N, Malinowska M, Wesierska MJ. Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol Learn Mem. 2011;96(3):452–60.  https://doi.org/10.1016/j.nlm.2011.06.018.CrossRefPubMedGoogle Scholar
  82. 82.
    Pedron S, Monnin J, Haffen E, Sechter D, Van Waes V. Repeated transcranial direct current stimulation prevents abnormal behaviors associated with abstinence from chronic nicotine consumption. Neuropsychopharmacology. 2014;39(4):981–8.  https://doi.org/10.1038/npp.2013.298.CrossRefPubMedGoogle Scholar
  83. 83.
    Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988;31(1):47–59.CrossRefPubMedGoogle Scholar
  84. 84.
    Binder S, Rawohl J, Born J, Marshall L. Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci. 2013;7:220.  https://doi.org/10.3389/fnbeh.2013.00220. PubMedCrossRefGoogle Scholar
  85. 85.
    Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005;6(2):119–30.  https://doi.org/10.1038/nrn1607.CrossRefPubMedGoogle Scholar
  86. 86.
    Leon WC, Bruno MA, Allard S, Nader K, Cuello AC. Engagement of the PFC in consolidation and recall of recent spatial memory. Learn Mem. 2010;17(6):297–305.  https://doi.org/10.1101/lm.1804410.CrossRefPubMedGoogle Scholar
  87. 87.
    Faraji J, Gomez-Palacio-Schjetnan A, Luczak A, Metz GA. Beyond the silence: bilateral somatosensory stimulation enhances skilled movement quality and neural density in intact behaving rats. Behav Brain Res. 2013;253:78–89.  https://doi.org/10.1016/j.bbr.2013.07.022.CrossRefPubMedGoogle Scholar
  88. 88.
    Bennabi D, Pedron S, Haffen E, Monnin J, Peterschmitt Y, Van Waes V. Transcranial direct current stimulation for memory enhancement: from clinical research to animal models. Front Syst Neurosci. 2014;8:159.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yoon KJ, Oh B-M, Kim D-Y. Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res. 2012;1452:61–72.  https://doi.org/10.1016/j.brainres.2012.02.062.CrossRefPubMedGoogle Scholar
  90. 90.
    Jiang T, Xu RX, Zhang AW, Di W, Xiao ZJ, Miao JY, et al. Effects of transcranial direct current stimulation on hemichannel pannexin-1 and neural plasticity in rat model of cerebral infarction. Neuroscience. 2012;226(Supplement C):421–6.  https://doi.org/10.1016/j.neuroscience.2012.09.035.CrossRefPubMedGoogle Scholar
  91. 91.
    • Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol. 2016;279:127–36.  https://doi.org/10.1016/j.expneurol.2016.02.018. Multiple benefits of both anodal and cathodal tDCS induced through multifaceted mechanisms in a rat model of stroke. CrossRefPubMedGoogle Scholar
  92. 92.
    Peruzzotti-Jametti L, Cambiaghi M, Bacigaluppi M, Gallizioli M, Gaude E, Mari S, et al. Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke. Stroke. 2013;44(11):3166–74.  https://doi.org/10.1161/STROKEAHA.113.001687.
  93. 93.
    Yoon KJ, Lee Y-T, Chae SW, Park CR, Kim DY. Effects of anodal transcranial direct current stimulation (tDCS) on behavioral and spatial memory during the early stage of traumatic brain injury in the rats. J Neurol Sci. 2016;362:314–20.  https://doi.org/10.1016/j.jns.2016.02.005.CrossRefPubMedGoogle Scholar
  94. 94.
    Kim HJ, Han SJ. Anodal transcranial direct current stimulation provokes neuroplasticity in repetitive mild traumatic brain injury in rats. Neural Plast. 2017;2017:1372946.  https://doi.org/10.1155/2017/1372946. PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Notturno F, Pace M, Zappasodi F, Cam E, Bassetti CL, Uncini A. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model. J Neurol Sci. 2014;342(1–2):146–51.  https://doi.org/10.1016/j.jns.2014.05.017.CrossRefPubMedGoogle Scholar
  96. 96.
    Liu Y-H, Chan SJ, Pan H-C, Bandla A, King NKK, Wong PTH, et al. Integrated treatment modality of cathodal-transcranial direct current stimulation with peripheral sensory stimulation affords neuroprotection in a rat stroke model. Neurophotonics. 2017;4(4):45002.  https://doi.org/10.1117/1.NPh.4.4.045002.
  97. 97.
    Keuters MH, Aswendt M, Tennstaedt A, Wiedermann D, Pikhovych A, Rotthues S, et al. Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain. NMR Biomed. 2015;28(2):231–9.  https://doi.org/10.1002/nbm.3244.
  98. 98.
    Stoll G, Jander S, Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol. 2002;513:87–113.PubMedGoogle Scholar
  99. 99.
    Millan MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999;57(1):1–164.CrossRefPubMedGoogle Scholar
  100. 100.
    Laste G, Caumo W, Adachi LNS, Rozisky JR, de Macedo IC, Filho PRM, et al. After-effects of consecutive sessions of transcranial direct current stimulation (tDCS) in a rat model of chronic inflammation. Exp Brain Res. 2012;221(1):75–83.  https://doi.org/10.1007/s00221-012-3149-x.
  101. 101.
    Lima MC, Fregni F. Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology. 2008;70(24):2329–37.  https://doi.org/10.1212/01.wnl.0000314649.38527.93.CrossRefPubMedGoogle Scholar
  102. 102.
    Nekhendzy V, Fender CP, Davies MF, Lemmens HJM, Kim MS, Bouley DM, et al. The antinociceptive effect of transcranial electrostimulation with combined direct and alternating current in freely moving rats. Anesth Analg. 2004;98(3):730–7. table of contentsCrossRefPubMedGoogle Scholar
  103. 103.
    Spezia Adachi LN, Caumo W, Laste G, Fernandes Medeiros L, Ripoll Rozisky J, de Souza A, et al. Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Res. 2012;1489:17–26.  https://doi.org/10.1016/j.brainres.2012.10.009.
  104. 104.
    Fregni F, Macedo IC, Spezia-Adachi LN, Scarabelot VL, Laste G, Souza A, et al. Transcranial direct current stimulation (tDCS) prevents chronic stress-induced hyperalgesia in rats. Brain Stimul. 2017;11:299–301.  https://doi.org/10.1016/j.brs.2017.11.009.
  105. 105.
    da Silva Moreira SF, Medeiros LF, de Souza A, de Oliveira C, Scarabelot VL, Fregni F, et al. Transcranial direct current stimulation (tDCS) neuromodulatory effects on mechanical hyperalgesia and cortical BDNF levels in ovariectomized rats. Life Sci. 2016;145:233–9.  https://doi.org/10.1016/j.lfs.2015.10.011.
  106. 106.
    Dimov LF, Franciosi AC, Campos ACP, Brunoni AR, Pagano RL. Top-down effect of direct current stimulation on the nociceptive response of rats. PLoS One. 2016;11(4):e0153506.  https://doi.org/10.1371/journal.pone.0153506.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    de Souza A, Martins DF, Fernandes Medeiros L, Nucci C, Cesar Martins T, Siteneski A, et al. Neurobiological mechanisms of antiallodynic effect of transcranial direct current stimulation (tDCS) in a mice model of neuropathic pain. Brain Res. 2017;1682:14–23.  https://doi.org/10.1016/j.brainres.2017.12.005. CrossRefPubMedGoogle Scholar
  108. 108.
    Cioato SG, Medeiros LF, Marques Filho PR, Vercelino R, de Souza A, Scarabelot VL, et al. Long-lasting effect of transcranial direct current stimulation in the reversal of hyperalgesia and cytokine alterations induced by the neuropathic pain model. Brain Stimul. 2016;9(2):209–17.  https://doi.org/10.1016/j.brs.2015.12.001.
  109. 109.
    Filho PRM, Vercelino R, Cioato SG, Medeiros LF, de Oliveira C, Scarabelot VL, et al. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: long-lasting effect. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:44–51.  https://doi.org/10.1016/j.pnpbp.2015.06.016.CrossRefGoogle Scholar
  110. 110.
    Wen H-Z, Gao S-H, Zhao Y-D, He W-J, Tian X-L, Ruan H-Z. Parameter optimization analysis of prolonged analgesia effect of tDCS on neuropathic pain rats. Front Behav Neurosci. 2017;11:115.  https://doi.org/10.3389/fnbeh.2017.00115.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Lefaucheur J-P. A comprehensive database of published tDCS clinical trials (2005–2016). Neurophysiol Clin. 2016;46(6):319–98.  https://doi.org/10.1016/j.neucli.2016.10.002.CrossRefPubMedGoogle Scholar
  112. 112.
    Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, et al. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol. 2016;127(11):3425–54.  https://doi.org/10.1016/j.clinph.2016.08.016.
  113. 113.
    Pedron S, Beverley J, Haffen E, Andrieu P, Steiner H, Van Waes V. Transcranial direct current stimulation produces long-lasting attenuation of cocaine-induced behavioral responses and gene regulation in corticostriatal circuits. Addict Biol. 2017;22(5):1267–78.  https://doi.org/10.1111/adb.12415.CrossRefPubMedGoogle Scholar
  114. 114.
    Macedo IC, de Oliveira C, Vercelino R, Souza A, Laste G, Medeiros LF, et al. Repeated transcranial direct current stimulation reduces food craving in Wistar rats. Appetite. 2016;103:29–37.  https://doi.org/10.1016/j.appet.2016.03.014.
  115. 115.
    Peanlikhit T, Van Waes V, Pedron S, Risold P-Y, Haffen E, Etievant A, et al. The antidepressant-like effect of tDCS in mice: a behavioral and neurobiological characterization. Brain Stimul. 2017;10(4):748–56.  https://doi.org/10.1016/j.brs.2017.03.012.CrossRefPubMedGoogle Scholar
  116. 116.
    • Monai H, Hirase H. Astrocytic calcium activation in a mouse model of tDCS-extended discussion. Neurogenes (Austin, Tex). 2016;3(1):e1240055.  https://doi.org/10.1080/23262133.2016.1240055. One of the first studies showing glial implication in tDCS-induced plasticity in mice. CrossRefGoogle Scholar
  117. 117.
    Leffa DT, de Souza A, Scarabelot VL, Medeiros LF, de Oliveira C, Grevet EH, et al. Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol. 2016;26(2):368–77.  https://doi.org/10.1016/j.euroneuro.2015.11.012.
  118. 118.
    Chang W-P, Lu H-C, Shyu B-C. Treatment with direct-current stimulation against cingulate seizure-like activity induced by 4-aminopyridine and bicuculline in an in vitro mouse model. Exp Neurol. 2015;265:180–92.  https://doi.org/10.1016/j.expneurol.2015.02.002.CrossRefPubMedGoogle Scholar
  119. 119.
    Zobeiri M, van Luijtelaar G. Noninvasive transcranial direct current stimulation in a genetic absence model. Epilepsy Behav. 2013;26(1):42–50.  https://doi.org/10.1016/j.yebeh.2012.10.018.CrossRefPubMedGoogle Scholar
  120. 120.
    Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, et al. Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia. 2006;47(7):1216–24.  https://doi.org/10.1111/j.1528-1167.2006.00539.x.
  121. 121.
    Kamida T, Kong S, Eshima N, Abe T, Fujiki M, Kobayashi H. Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats. Behav Brain Res. 2011;217(1):99–103.  https://doi.org/10.1016/j.bbr.2010.08.050.CrossRefPubMedGoogle Scholar
  122. 122.
    Kamida T, Kong S, Eshima N, Fujiki M. Cathodal transcranial direct current stimulation affects seizures and cognition in fully amygdala-kindled rats. Neurol Res. 2013;35(6):602–7.  https://doi.org/10.1179/1743132813Y.0000000170.CrossRefPubMedGoogle Scholar
  123. 123.
    Dhamne SC, Ekstein D, Zhuo Z, Gersner R, Zurakowski D, Loddenkemper T, et al. Acute seizure suppression by transcranial direct current stimulation in rats. Ann Clin Transl Neurol. 2015;2(8):843–56.  https://doi.org/10.1002/acn3.226.
  124. 124.
    Rushmore RJ, DeSimone C, Valero-Cabre A. Multiple sessions of transcranial direct current stimulation to the intact hemisphere improves visual function after unilateral ablation of visual cortex. Eur J Neurosci. 2013;38(12):3799–807.  https://doi.org/10.1111/ejn.12373.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Wu Y-J, Lin C-C, Yeh C-M, Chien M-E, Tsao M-C, Tseng P, et al. Repeated transcranial direct current stimulation improves cognitive dysfunction and synaptic plasticity deficit in the prefrontal cortex of streptozotocin-induced diabetic rats. Brain Stimul. 2017;10(6):1079–87.  https://doi.org/10.1016/j.brs.2017.08.007.
  126. 126.
    Yu SH, Park SD, Sim KC. The effect of tDCS on cognition and neurologic recovery of rats with Alzheimer’s disease. J Phys Ther Sci. 2014;26(2):247–9.  https://doi.org/10.1589/jpts.26.247.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Yu X, Li Y, Wen H, Zhang Y, Tian X. Intensity-dependent effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer’s disease. Neurobiol Learn Mem. 2015;123:168–78.  https://doi.org/10.1016/j.nlm.2015.06.003.CrossRefPubMedGoogle Scholar
  128. 128.
    Li Y, Tian X, Qian L, Yu X, Jiang W. Anodal transcranial direct current stimulation relieves the unilateral bias of a rat model of Parkinson’s disease. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2011;2011:765–8.  https://doi.org/10.1109/IEMBS.2011.6090175.CrossRefGoogle Scholar
  129. 129.
    Li H, Lei X, Yan T, Li H, Huang B, Li L, et al. The temporary and accumulated effects of transcranial direct current stimulation for the treatment of advanced Parkinson’s disease monkeys. Sci Rep. 2015;5:12178.  https://doi.org/10.1038/srep12178.
  130. 130.
    Lu C, Wei Y, Hu R, Wang Y, Li K, Li X. Transcranial direct current stimulation ameliorates behavioral deficits and reduces oxidative stress in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Neuromodulation. 2015;18(6):442–6; discussion 447.  https://doi.org/10.1111/ner.12302.CrossRefPubMedGoogle Scholar
  131. 131.
    Tanaka T, Takano Y, Tanaka S, Hironaka N, Kobayashi K, Hanakawa T, et al. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Front Syst Neurosci. 2013;7:6.  https://doi.org/10.3389/fnsys.2013.00006.
  132. 132.
    •• Winkler C, Reis J, Hoffmann N, Gellner A-K, Munkel C, Curado MR, et al. Anodal transcranial direct current stimulation enhances survival and integration of dopaminergic cell transplants in a rat Parkinson model. eNeuro. 2017;4(5)  https://doi.org/10.1523/ENEURO.0063-17.2017. First study to prove beneficial effects of anodal tDCS on survival and reinnervation of dopaminergic cell transplants in a rat Parkinson model.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carlos A. Sánchez-León
    • 1
  • Claudia Ammann
    • 2
  • Javier F. Medina
    • 3
  • Javier Márquez-Ruiz
    • 1
    Email author
  1. 1.Division of NeurosciencesPablo de Olavide UniversitySevilleSpain
  2. 2.CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo UniversityMadridSpain
  3. 3.Department of NeuroscienceBaylor College of MedicineHoustonUSA

Personalised recommendations