Skip to main content
Log in

Rapid-Acting Antidepressants: Mechanistic Insights and Future Directions

  • Mood and Anxiety Disorders (C Harmer, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Ketamine produces rapid (within hours) antidepressant actions, even in patients considered treatment resistant, and even shows promise for suicidal ideation. Here, we review current research on the molecular and cellular mechanisms of ketamine and other novel rapid-acting antidepressants, and briefly explore gender differences in the pathophysiology and treatment of MDD.

Recent Findings

Ketamine, an NMDA receptor antagonist, increases BDNF release and synaptic connectivity, opposing the deficits caused by chronic stress and depression. Efforts are focused on the development of novel rapid agents that produce similar synaptic and rapid antidepressant actions, but without the side effects of ketamine. The impact of gender on the response to ketamine and other rapid-acting antidepressants is in early stages of investigation.

Summary

The discovery that ketamine produces rapid therapeutic actions for depression and suicidal ideation represents a major breakthrough and much needed alternative to currently available medications. However, novel fast acting agents with fewer side effects are needed, as well as elucidation of the efficacy of these rapid-acting antidepressants for depression in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kessler RC, Chiu WT, Demler O, Walters EE. Prevalence, severity, and comorbidity of 12-Month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):617. Available from: http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.62.6.617

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kessler RC. The costs of depression. Psychiatr Clin N Am. 2012;35(1):1–14. https://doi.org/10.1016/j.psc.2011.11.005.

    Article  Google Scholar 

  3. Murray CJL, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608. Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.13805

    Article  CAS  PubMed  Google Scholar 

  4. Simon GE. Social and economic burden of mood disorders. Biol Psychiatry. 2003;54(3):208–15.

    Article  PubMed  Google Scholar 

  5. WHO. WHO | Depression [Internet]. Who. 2017. Available from: http://www.who.int/mediacentre/factsheets/fs369/en/

  6. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163(1):28–40. https://doi.org/10.1176/appi.ajp.163.1.28.

    Article  PubMed  Google Scholar 

  7. CDC. National Violent Death Reporting System [Internet]. 2015. Available from: https://www.cdc.gov/violenceprevention/nvdrs/index.html

  8. Hedegaard H, Warner M, Curtin SC. Increase in suicide in the United States, 1999–2014. NCHS Data Brief. 2016;241:1–8. Available from: https://www.cdc.gov/nchs/data/databriefs/db241.pdf

    Google Scholar 

  9. Seney ML, Chang LC, Oh H, Wang X, Tseng GC, Lewis DA, et al. The role of genetic sex in affect regulation and expression of GABA-related genes across species. Front Psychiatry. 2013;4(SEP) https://doi.org/10.3389/fpsyt.2013.00104.

  10. Undurraga J, Baldessarini RJ. Randomized, placebo-controlled trials of antidepressants for acute major depression: thirty-year meta-analytic review. Neuropsychopharmacology. 2012;37(4):851–64. Available from: http://www.nature.com/doifinder/10.1038/npp.2011.306

    Article  CAS  PubMed  Google Scholar 

  11. Berman RM, Cappiello A, Anand A, D a O, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Soc Biol Psychiatry. 2000;47(4):351–4. https://doi.org/10.1016/S0006-3223(99)00230-9.

    Article  CAS  Google Scholar 

  12. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856. Available from: http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.63.8.856

    Article  CAS  PubMed  Google Scholar 

  13. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338(6103):68–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23042884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev. 2009;33(5):699–771. https://doi.org/10.1016/j.neubiorev.2009.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science (80- ). 2010;329(5994):959–64. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1190287

    Article  CAS  Google Scholar 

  16. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69(8):754–61. https://doi.org/10.1016/j.biopsych.2010.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18(9):1413–7. Available from: http://www.nature.com/doifinder/10.1038/nm.2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM, et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry. 2015;77(3):285–94. https://doi.org/10.1016/j.biopsych.2014.06.018.

    Article  PubMed  Google Scholar 

  19. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26(30):7870–4. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1184-06.2006

    Article  CAS  PubMed  Google Scholar 

  20. Liu R-J, Aghajanian GK. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci U S A. 2008;105(1):359–64. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2224217&tool=pmcentrez&rendertype=abstract. https://doi.org/10.1073/pnas.0706679105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shansky RM, Morrison JH. Stress-induced dendritic remodeling in the medial prefrontal cortex: effects of circuit, hormones and rest. Brain Res. 2009;1293:108–13. https://doi.org/10.1016/j.brainres.2009.03.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ota KT, Liu R-J, Voleti B, Maldonado-Aviles JG, Duric V, Iwata M, et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med. 2014;20(5):531–5. Available from: http://www.nature.com/doifinder/10.1038/nm.3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Colzato LS, Van der Does AJW, Kouwenhoven C, Elzinga BM, Hommel B. BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults. Psychoneuroendocrinology. 2011;36(10):1562–9. https://doi.org/10.1016/j.psyneuen.2011.04.010.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z-Y, Jing D, Bath KG, Ieraci A, Khan T, Siao C-J, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science (80- ). 2006;314(5796):140–3. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1129663

    Article  CAS  Google Scholar 

  25. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012;71(11):996–1005. https://doi.org/10.1016/j.biopsych.2011.09.030.

    Article  CAS  PubMed  Google Scholar 

  26. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–69. https://doi.org/10.1016/S0092-8674(03)00035-7.

    Article  CAS  PubMed  Google Scholar 

  27. Pattwell SS, Bath KG, Perez-Castro R, Lee FS, Chao MV, Ninan I. The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex. J Neurosci. 2012;32(7):2410–21. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5205-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bath KG, Jing DQ, Dincheva I, Neeb CC, Pattwell SS, Chao MV, et al. BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology. 2012;37(5):1297–304. Available from: http://www.nature.com/doifinder/10.1038/npp.2011.318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci. 2005;6(3):215–29. Available from: http://www.nature.com/doifinder/10.1038/nrn1625

    Article  CAS  PubMed  Google Scholar 

  30. Croarkin PE, Levinson AJ, Daskalakis ZJ. Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev. 2011;35(3):818–25. https://doi.org/10.1016/j.neubiorev.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  31. Hasler G, van der Veen J, Tumonis T, Meyers N, Shen J, Drevets W. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64(2):193–200. https://doi.org/10.1001/archpsyc.64.2.193.

    Article  CAS  PubMed  Google Scholar 

  32. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA, et al. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 1999;56(11):1043–7. https://doi.org/10.1001/archpsyc.56.11.1043.

    Article  CAS  PubMed  Google Scholar 

  33. Guilloux J-P, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, et al. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry. 2012;17(11):1130–42. Available from: http://www.nature.com/doifinder/10.1038/mp.2011.113

    Article  CAS  PubMed  Google Scholar 

  34. Karolewicz B, Maciag D, O’Dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol. 2010;13(4):411. Available from: https://academic.oup.com/ijnp/article-lookup/doi/10.1017/S1461145709990587

    Article  CAS  PubMed  Google Scholar 

  35. Niciu MJ, Ionescu DF, Richards EM, Zarate CA. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J Neural Transm. 2014;121(8):907–24. https://doi.org/10.1007/s00702-013-1130-x.

    Article  CAS  PubMed  Google Scholar 

  36. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuro-Psychopharmacology Biol Psychiatry. 2009;33(1):70–5. https://doi.org/10.1016/j.pnpbp.2008.10.005.

    Article  CAS  Google Scholar 

  37. Klumpers UMH, Veltman DJ, Drent ML, Boellaard R, Comans EFI, Meynen G, et al. Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: preliminary results. Eur J Nucl Med Mol Imaging. 2010;37(3):565–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19890631

    Article  CAS  PubMed  Google Scholar 

  38. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci. 2005;102(43):15653–8. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0507901102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Ren Z, Pribiag H, Jefferson SJ, Shorey M, Fuchs T, Stellwagen D, et al. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric Acidergic deficits and ketamine treatment. Biol Psychiatry. 2016;80(6):457–68. https://doi.org/10.1016/j.biopsych.2016.02.009. Study demonstrating how GABAergic deficits can alter glutamatergic synaptic transmission in the prefrontal cortex.

  40. Shen Q, Lal R, Luellen BA, Earnheart JC, Andrews AM, Luscher B. γ-aminobutyric acid-type a receptor deficits cause hypothalamic-pituitary-adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression. Biol Psychiatry. 2010;68(6):512–20. https://doi.org/10.1016/j.biopsych.2010.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maeng S, Zarate CA, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17643398

    Article  CAS  PubMed  Google Scholar 

  42. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol. 2015;18(1):pyu033. https://doi.org/10.1093/ijnp/pyu033.

    Article  Google Scholar 

  43. Koike H, Iijima M, Chaki S. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res. 2011;224(1):107–11. https://doi.org/10.1016/j.bbr.2011.05.035.

    Article  CAS  PubMed  Google Scholar 

  44. Singh JB, Fedgchin M, Daly E, Xi L, Melman C, De Bruecker G, et al. Intravenous Esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol Psychiatry. 2016;80(6):424–31. https://doi.org/10.1016/j.biopsych.2015.10.018.

    Article  CAS  PubMed  Google Scholar 

  45. Yang C, Shirayama Y, Zhang J, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5(9):e632. Available from: http://www.nature.com/doifinder/10.1038/tp.2015.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang C, Ren Q, Qu Y, Zhang JC, Ma M, Dong C, et al. Mechanistic target of rapamycin–independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psychiatry. 2018;83(1):18–28. https://doi.org/10.1016/j.biopsych.2017.05.016.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang JC, Li SX, Hashimoto K. R (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav. 2014;116:137–41. https://doi.org/10.1016/j.pbb.2013.11.033.

    Article  CAS  PubMed  Google Scholar 

  48. Fukumoto K, Toki H, Iijima M, Hashihayata T, Yamaguchi J, Hasimoto K, et al. Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharmacol Exp Ther. 2017;361(1):9–16. https://doi.org/10.1124/jpet.116.239228.

    Article  CAS  PubMed  Google Scholar 

  49. •• Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481–6. Available from: http://www.nature.com/doifinder/10.1038/nature17998. First studying demonstrating the rapid antidepressant potential of the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) in mice.

  50. Zhang X l, Sullivan JA, Moskal JR, Stanton PK. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus. Neuropharmacology. 2008;55(7):1238–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burgdorf J, Zhang X, Nicholson KL, Balster RL, David Leander J, Stanton PK, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology. 2013;38(5):729–42. Available from: http://www.nature.com/doifinder/10.1038/npp.2012.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moskal JR, Burgdorf JS, Stanton PK, Kroes RA, Disterhoft JF, Burch RM, et al. The development of rapastinel (formerly GLYX-13); a rapid acting and long lasting antidepressant. Curr Neuropharmacol. 2017;15(1):47–56. https://doi.org/10.2174/1570159X14666160321122703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lepack AE, Bang E, Lee B, Dwyer JM, Duman RS. Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology. 2016;111:242–52. https://doi.org/10.1016/j.neuropharm.2016.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu R-J, Duman C, Kato T, Hare B, Lopresto D, Bang E, et al. GLYX-13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine. Neuropsychopharmacology. 2017;42(6):1231–42. Available from: http://www.nature.com/doifinder/10.1038/npp.2016.202

  55. • Preskorn S, Macaluso M, Mehra DV, Zammit G, Moskal JR, Burch RM. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract. 2015;21(2):140–9. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00131746-201503000-00006. https://doi.org/10.1097/01.pra.0000462606.17725.93. Study demonstrating the rapid and sustained antidepressant effects of the novel rapid-acting agent GLYX-13 in a clinical population

    Article  PubMed  Google Scholar 

  56. Drevets WC, Zarate CA, Furey ML. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review. Biol Psychiatry. 2013;73(12):1156–63. https://doi.org/10.1016/j.biopsych.2012.09.031.

    Article  CAS  PubMed  Google Scholar 

  57. Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine. Arch Gen Psychiatry. 2006;63(10):1121. Available from: http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.63.10.1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Furey ML, Khanna A, Hoffman EM, Drevets WC. Scopolamine produces larger antidepressant and antianxiety effects in women than in men. Neuropsychopharmacology. 2010;35(12):2479–88. https://doi.org/10.1038/npp.2010.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Voleti B, Navarria A, Liu RJ, Banasr M, Li N, Terwilliger R, et al. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry. 2013;74(10):742–9. https://doi.org/10.1016/j.biopsych.2013.04.025.

  60. Ghosal S, Bang E, Yue W, Hare BD, Lepack AE, Girgenti MJ, et al. Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol Psychiatry. 2018; 83(1):29–37. https://doi.org/10.1016/j.biopsych.2017.06.017.

    Article  CAS  PubMed  Google Scholar 

  61. Wohleb ES, Wu M, Gerhard DM, Taylor SR, Picciotto MR, Alreja M, et al. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Invest. 2016;126(7):2482–94. https://doi.org/10.1172/JCI85033.

  62. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17(8):2921–7.

    CAS  PubMed  Google Scholar 

  63. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238–49. Available from: http://www.nature.com/doifinder/10.1038/nm.4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gerhard DM, Wohleb ES, Duman RS. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity. Drug Discov Today. 2016;21(3):454–64. https://doi.org/10.1016/j.drudis.2016.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: direct inhibition and disinhibition. Neuropharmacology. 2016;100:17–26. https://doi.org/10.1016/j.neuropharm.2015.07.028.

    Article  CAS  PubMed  Google Scholar 

  66. Freedman R. Further investigation of ketamine. Am J Psychiatr. 2016;173(8):761–2. https://doi.org/10.1176/appi.ajp.2016.16050581.

    Article  PubMed  Google Scholar 

  67. Newport DJ, Schatzberg AF, Nemeroff CB. Whither ketamine as an antidepressant: panacea or toxin? Depress Anxiety. 2016;33(8):685–8. Available from: http://doi.wiley.com/10.1002/da.22535

    Article  CAS  PubMed  Google Scholar 

  68. Jaso B, Niciu M, Iadarola N, Lally N, Richards E, Park M, et al. Therapeutic modulation of glutamate receptors in major depressive disorder. Curr Neuropharmacol. 2016;15(1):57–70. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1570-159X&volume=15&issue=1&spage=57. https://doi.org/10.2174/1570159X14666160321123221.

  69. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol. 2008;28(6):631–7. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004714-200812000-00008. https://doi.org/10.1097/JCP.0b013e31818a6cea.

    Article  CAS  PubMed  Google Scholar 

  70. Domino EF. Taming the ketamine tiger. Anesthesiology. 2010;113(3):678–86. https://doi.org/10.1097/ALN.0b013e3181ed09a2.

    PubMed  Google Scholar 

  71. Kuehner C. Why is depression more common among women than among men? Lancet Psychiatry. 2017;4(2):146–58. https://doi.org/10.1016/S2215-0366(16)30263-2.

    Article  PubMed  Google Scholar 

  72. Mazure CM, Jones DP. Twenty years and still counting: including women as participants and studying sex and gender in biomedical research. BMC Womens Health. 2015;15(1):94. Available from: http://bmcwomenshealth.biomedcentral.com/articles/10.1186/s12905-015-0251-9

    Article  PubMed  PubMed Central  Google Scholar 

  73. Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48(3):143–57. https://doi.org/10.2165/00003088-200948030-00001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khan A, Brodhead AE, Schwartz KA, Kolts RL, Brown WA. Sex differences in antidepressant response in recent antidepressant clinical trials. J Clin Psychopharmacol. 2005;25(4):318–24. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004714-200508000-00005. https://doi.org/10.1097/01.jcp.0000168879.03169.ce.

    Article  PubMed  Google Scholar 

  75. Bangasser DA, Valentino RJ. Sex differences in stress-related psychiatric disorders: neurobiological perspectives. Front Neuroendocrinol. 2014;35(3):303–19. https://doi.org/10.1016/j.yfrne.2014.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, et al. Major depressive disorder. Nat Rev Dis Prim. 2016;2:16065. Available from: http://www.nature.com/articles/nrdp201665

    Article  PubMed  Google Scholar 

  77. •• Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. Sex-specific transcriptional signatures in human depression. Nat Med. 2017;23(9):1102–11. Available from: http://www.nature.com/doifinder/10.1038/nm.4386. A major strength of this study is the translational experiments performed in mice. Using a viral mediated strategy to either downregulate Dusp6 or overexpress EMX1 in female and male mice, respectively, the mice exhibited increased susceptibility to chronic variable stress (CVS) and partially reproduced the depressive behaviors seen with CVS.

  78. Duman RS. Sex-specific disease-associated modules for depression. Nat Med. 2017;23(9):1015–7. Available from: http://www.nature.com/doifinder/10.1038/nm.4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, et al. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci. 2007;10(12):1515–7. Available from: http://www.nature.com/doifinder/10.1038/nn2001

  80. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, et al. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One. 2009;4(8):e6585. https://doi.org/10.1371/journal.pone.0006585.

  81. Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry. 2011;16(4):383–406. Available from: http://www.nature.com/doifinder/10.1038/mp.2010.120

    Article  CAS  PubMed  Google Scholar 

  82. Franceschelli A, Sens J, Herchick S, Thelen C, Pitychoutis PM. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and “depressed” mice exposed to chronic mild stress. Neuroscience. 2015;290:49–60. https://doi.org/10.1016/j.neuroscience.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  83. • Sarkar A, Kabbaj M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol Psychiatry. 2016;80(6):448–56. https://doi.org/10.1016/j.biopsych.2015.12.025. Study demonstrating sex differentiated responses to chronic social isolation and subsequent ketamine treatment.

  84. Bi R, Foy MR, Vouimba RM, Thompson RF, Baudry M. Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proc Natl Acad Sci U S A. 2001;98(23):13391–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=60881&tool=pmcentrez&rendertype=abstract. https://doi.org/10.1073/pnas.241507698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith CC, McMahon LL. Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors. J Neurosci. 2006;26(33):8517–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16914677

    Article  CAS  PubMed  Google Scholar 

  86. Smith CC, Vedder LC, LL MM. Estradiol and the relationship between dendritic spines, NR2B containing NMDA receptors, and the magnitude of long-term potentiation at hippocampal CA3-CA1 synapses. Psychoneuroendocrinology. 2009;34S1:S130–S142. https://doi.org/10.1016/j.psyneuen.2009.06.003.

    Article  PubMed Central  Google Scholar 

  87. Carrier N, Kabbaj M. Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology. 2013;70:27–34. https://doi.org/10.1016/j.neuropharm.2012.12.009.

    Article  CAS  PubMed  Google Scholar 

  88. Li C-SR, Zhang S, Hung C-C, Chen C-M, Duann J-R, Lin C-P, et al. Depression in chronic ketamine users: sex differences and neural bases. Psychiatry Res. 2017;269(April):1–8. https://doi.org/10.1016/j.pscychresns.2017.09.001.

  89. Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW, Feder A, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry. 2017; Available from: http://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2017.17040472

  90. Sibille E, French B. Biological substrates underpinning diagnosis of major depression. Int J Neuropsychopharmacol. 2013;16(8):1893–909. Available from: https://academic.oup.com/ijnp/article-lookup/doi/10.1017/S1461145713000436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry. 2016;3(3):243–50. https://doi.org/10.1016/S2215-0366(15)00471-X.

  92. Chekroud AM, Gueorguieva R, Krumholz HM, Trivedi MH, Krystal JH, McCarthy G. Reevaluating the efficacy and predictability of antidepressant treatments. JAMA Psychiatry. 2017;74(4):370. Available from: http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2017.0025–8.

    Article  PubMed  Google Scholar 

  93. Gueorguieva R, Chekroud AM, Krystal JH. Trajectories of relapse in randomised, placebo-controlled trials of treatment discontinuation in major depressive disorder: an individual patient-level data meta-analysis. Lancet Psychiatry. 2017;4(3):230–7. https://doi.org/10.1016/S2215-0366(17)30038-X.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald S. Duman.

Ethics declarations

Conflicts of Interest

Dr. Duman reports grants from Allergan, Navitor, and Relmada, grants and personal fees from Janssen, Naurex, and Taisho.

Dr. Gerhard has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mood and Anxiety Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerhard, D.M., Duman, R.S. Rapid-Acting Antidepressants: Mechanistic Insights and Future Directions. Curr Behav Neurosci Rep 5, 36–47 (2018). https://doi.org/10.1007/s40473-018-0139-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-018-0139-8

Keywords

Navigation