Current Behavioral Neuroscience Reports

, Volume 4, Issue 2, pp 128–137 | Cite as

What Can Transcranial Alternating Current Stimulation Tell Us About Brain Oscillations?

  • Christoph S. Herrmann
  • Daniel Strüber
Neuromodulation (C Stagg, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuromodulation


Purpose of the Review

Transcranial alternating current stimulation (tACS) allows to interfere with oscillatory brain activity. Here, we provide an overview of novel approaches for removing the tACS artefact to elucidate the mechanisms responsible for on-line tACS effects. Furthermore, we review recent findings on tACS after-effects and clinical applications.

Recent Findings

tACS-induced entrainment of alpha oscillations was demonstrated in on-line electroencephalography (EEG) and magnetoencephalography (MEG) recordings. On-line effects have also been revealed by innovative tACS protocols utilizing amplitude modulation, cross-frequency coupling, non-sinusoidal waveforms, and non-electrical physiological measures. tACS after-effects on alpha power exceeding 1-h duration have been reported, and a behavioral relevance of these physiological changes was shown for the first time.


Our understanding of tACS on-line effects greatly benefited from new artefact removal approaches. After-effects of varying duration have been consistently reported but the underlying mechanism is still unclear. tACS as a neurotherapeutic is only emerging, but first evidence for successful tACS interventions in neuropsychiatric and neurological disorders is encouraging.


Electroencephalogram Brain oscillations Transcranial electric stimulation Transcranial alternating current stimulation tACS artefact 



This work was supported by a grant of the German Research Foundation (DFG, SPP1665 HE3353/8-1) awarded to Dr. Herrmann.

Compliance with Ethical Standards

Conflict of Interest

Dr. Herrmann has received honoraria as editor from Elsevier Publishers and has filed a patent application for transcranial electric stimulation.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).


Papers of Particular Interest, Published Recently, Have Been Highlighted as: • Of Importance •• Of Major Importance

  1. 1.
    Romei V, Thut G, Silvanto J. Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci. 2016;39(11):782–95.CrossRefPubMedGoogle Scholar
  2. 2.
    Veniero D, Strüber D, Thut G, Herrmann CS. Noninvasive brain stimulation techniques can modulate cognitive processing. Organ Res Methods. 2016:1–32.Google Scholar
  3. 3.
    Cohen KR. Modulating and enhancing cognition using brain stimulation: science and fiction. J Cogn Psychol. 2015;27(2):141–63.CrossRefGoogle Scholar
  4. 4.
    Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage. 2014;85:961–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011;21(14):1176–85.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010 Jan;5(11):e13766.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Herrmann CS, Strüber D, Helfrich RF, Engel AK. EEG oscillations: from correlation to causality. Int J Psychophysiol. 2016;103:12–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Battleday RM, Muller T, Clayton MS, Cohen Kadosh R. Mapping the mechanisms of transcranial alternating current stimulation: a pathway from network effects to cognition. Front Psychiatry. 2014;5:1–5.CrossRefGoogle Scholar
  9. 9.
    Fröhlich F, Sellers KK, Cordle AL. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev Neurother. 2015;15(2):145–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013;7(279).Google Scholar
  11. 11.
    Schutter DJLG, Wischnewski M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia. 2016;86:110–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Antonenko D, Faxel M, Grittner U, Lavidor M, Flöel A. Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. Neural Plast. 2016;2016:no pagination.Google Scholar
  13. 13.
    Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–48.CrossRefPubMedGoogle Scholar
  14. 14.
    Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30(45):15067–79.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Francis JT, Gluckman BJ, Schiff SJ. Sensitivity of neurons to weak electric fields. J Neurosci. 2003;23(19):7255–61.PubMedGoogle Scholar
  16. 16.
    Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–43.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS. Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS. Front Psychiatry. 2012;3(83).Google Scholar
  18. 18.
    Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: Possible mechanisms. Neural Plasticity. 2016.Google Scholar
  19. 19.
    •• Opitz A, Falchier A, Yan C, Yeagle E, Linn G. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in human and nonhuman primates. Sci Rep. 2016;6:31236. This study recorded human electrophysiology intra-cranially during tACS. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    •• Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife. 2017;10.7554/eL. This study recorded human electrophysiology intra-cranially during tACS.
  21. 21.
    Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in nonlinear sciences. Cambridge: University Press; 2001.CrossRefGoogle Scholar
  22. 22.
    Notbohm A, Kurths J, Herrmann CS. Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front Hum Neurosci. 2016;10(10).Google Scholar
  23. 23.
    • Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld S. A., Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24(3):333–9. This study demonstrated tACS-induced entrainment of brain oscillations in human EEG after removal of the tACS-artefact. CrossRefPubMedGoogle Scholar
  24. 24.
    Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012;5(4):505–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Neuling T, Ruhnau P, Fuscà M, Demarchi G, Herrmann CS, Weisz N. Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation. NeuroImage. 2015;118:406–13.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ruhnau P, Neuling T, Fuscá M, Herrmann CS, Demarchi G, Weisz N. Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner. Sci Rep. 2016;6(May):27138.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Noury N, Hipp JF, Siegel M. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. NeuroImage. 2016;140:99–109.CrossRefPubMedGoogle Scholar
  28. 28.
    Neuling T, Ruhnau P, Weisz N, Herrmann CS, Demarchi G. Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS. NeuroImage. 2017;147(November 2016):960–3.CrossRefPubMedGoogle Scholar
  29. 29.
    Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci. 2010;14(11):506–15.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    • Alekseichuk I, Turi Z, Amador de Lara G, Antal A, Paulus W. Spatial working memory in humans depends on theta and high gamma snchronization in the prefrontal cortex. Curr Biol. 2016;26(12):1513–21. This study used a cross-frequency stimulation signal for tACS compsed of gamma oscillations occurring during different phases of a theta oscillation. Google Scholar
  31. 31.
    Helfrich RF, Herrmann CS, Engel AK, Schneider TR. Different coupling modes mediate cortical cross-frequency interactions. NeuroImage. 2016;140:76–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Jensen O, Gips B, Bergmann TO, Bonnefond M. Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 2014;37(7):357–69.CrossRefPubMedGoogle Scholar
  33. 33.
    Witkowski M, Garcia-Cossio E, Chander BS, Braun C, Birbaumer N, Robinson SE, et al. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage. 2016;140:89–98.CrossRefPubMedGoogle Scholar
  34. 34.
    Negahbani E, Kasten FH, Herrmann CS, Fröhlich F. Targeting alpha oscillations with amplitude-modulated transcranial alternating current stimulation (AM-tACS). In: Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2016. Online.; 2016. p. Poster No. 506.10.Google Scholar
  35. 35.
    Alagapan S, Schmidt SL, Lefebvre J, Hadar E, Shin HW, Fröhlich F. Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent. PLoS Biol. 2016;14(3):1–21.Google Scholar
  36. 36.
    Dowsett J, Herrmann CS. Transcranial alternating current stimulation with sawtooth waves: Simultaneous stimulation and EEG recording. Front Hum Neurosci. 2016;10.Google Scholar
  37. 37.
    Jones SR. When brain rhythms aren’t “rhythmic”: implication for their mechanisms and meaning. Curr Opin Neurobiol. 2016;40:72–80.CrossRefPubMedGoogle Scholar
  38. 38.
    Cole S, Voytek B. Brain oscillations and the importance of waveform shape. Trends Cogn Sci. 2016;21(2):137–49.CrossRefGoogle Scholar
  39. 39.
    Antal A, Bikson M, Datta A, Lafon B, Dechent P, Parra LC, et al. Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage. 2014;85:1040–7.CrossRefPubMedGoogle Scholar
  40. 40.
    • Vosskuhl J, Huster R, Herrmann CS. BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: a concurrent tACS-fMRI study. NeuroImage. 2016;140:118–25. This study was the first to demonstrate BOLD effects of tACS. CrossRefPubMedGoogle Scholar
  41. 41.
    Alekseichuk I, Diers K, Paulus W, Antal A. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: a combined tES-fMRI approach. NeuroImage. 2016;140:110–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Cabral-Calderin Y, Williams KA, Opitz A, Dechent P, Wilke M. Transcranial alternating current stimulation modulates spontaneous low frequency fluctuations as measured with fMRI. NeuroImage. 2016;141:88–107.CrossRefPubMedGoogle Scholar
  43. 43.
    Cabral-Calderin Y, Weinrich CA, Schmidt-Samoa C, Poland E, Dechent P, Bähr M, et al. Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner. Hum Brain Mapp. 2016;37(1):94–121.CrossRefPubMedGoogle Scholar
  44. 44.
    Veniero D, Vossen A, Gross J, Thut G. Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: Level of control over oscillatory network activity. Front Cell Neurosci. 2015;9(477).Google Scholar
  45. 45.
    Strüber D, Rach S, Neuling T, Herrmann CS. On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Front Cell Neurosci. 2015;9(311).Google Scholar
  46. 46.
    Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci. 2013;7(161).Google Scholar
  47. 47.
    Kasten FH, Dowsett J, Herrmann CS. Sustained aftereffect of α-tACS lasts up to 70 minutes after stimulation. Front Hum Neurosci. 2016;10(245).Google Scholar
  48. 48.
    • Kasten FH, Herrmann CS. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Front Hum Neurosci. 2017;11(2):1–16. This study demonstrated the behavioural relevance of the physiological after-effect of tACS. Google Scholar
  49. 49.
    Klimesch W, Sauseng P, Gerloff C. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci. 2003;17(5):1129–33.CrossRefPubMedGoogle Scholar
  50. 50.
    Zoefel B, Huster RJ, Herrmann CS. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage. 2011;54(2):1427–31.CrossRefPubMedGoogle Scholar
  51. 51.
    Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8(3):499–508.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Başar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci. 2013;15:291–300.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Buzsáki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci. 2012;14:345–67.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Uhlhaas PJ, Singer W. Oscillations and neuronal dynamics in schizophrenia: the search for basic symptoms and translational opportunities. Biol Psychiatry. 2015;77(12):1001–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Eidelman-Rothman M, Levy J, Feldman R. Alpha oscillations and their impairment in affective and post-traumatic stress disorders. Neurosci Biobehav Rev. 2016;68:794–815.CrossRefPubMedGoogle Scholar
  56. 56.
    Başar E, Schmiedt-Fehr C, Mathes B, Femir B, Emek-Savaş DD, Tülay E, et al. What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer’s disease, and bipolar disorder. Int J Psychophysiol. 2016;103:135–48.CrossRefPubMedGoogle Scholar
  57. 57.
    Voytek B, Knight RT. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry. 2015;77(12):1089–97.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Calderone DJ, Lakatos P, Butler PD, Castellanos FX. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn Sci. 2014;18(6):300–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fröhlich F. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation. Dialogues Clin Neurosci. 2014;16:93–102.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Pérez C, Leite J, Carvalho S, Fregni F. Transcranial electrical stimulation (tES) for the treatment of neuropsychiatric disorders across lifespan. Eur Psychol. 2016;21(1):78–95.CrossRefGoogle Scholar
  61. 61.
    Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–3.CrossRefPubMedGoogle Scholar
  62. 62.
    Del Felice A, Magalini A, Masiero S. Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool. Brain Stimul. 2015;8(3):567–73.CrossRefPubMedGoogle Scholar
  63. 63.
    Göder R, Baier PC, Beith B, Baecker C, Seeck-Hirschner M, Junghanns K, et al. Effects of transcranial direct current stimulation during sleep on memory performance in patients with schizophrenia. Schizophr Res. 2013;144(1–3):153–4.CrossRefPubMedGoogle Scholar
  64. 64.
    Prehn-Kristensen A, Munz M, Göder R, Wilhelm I, Korr K, Vahl W, et al. Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls. Brain Stimul. 2014;7(6):793–9.CrossRefPubMedGoogle Scholar
  65. 65.
    • Munz MT, Prehn-Kristensen A, Thielking F, Molle M, Goder R, Baving L. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder. Front Cell Neurosci. 2015;9:307. This study demonstrates behavioural effects of tACS in boys with ADHD. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Schmidt S, Mante A, Rönnefarth M, Fleischmann R, Gall C, Brandt SA. Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study. Brain Stimul. 2013;6(1):87–93.CrossRefPubMedGoogle Scholar
  67. 67.
    Gall C, Silvennoinen K, Granata G, de Rossi F, Vecchio F, Brösel D, et al. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke. Contemp Clin Trials. 2015;43:231–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Angelakis E, Liouta E, Andreadis N, Leonardos A, Ktonas P, Stavrinou LC, et al. Transcranial alternating current stimulation reduces symptoms in intractable idiopathic cervical dystonia: a case study. Neurosci Lett. 2013;533(1):39–43.CrossRefPubMedGoogle Scholar
  69. 69.
    Hess CW. Modulation of cortical-subcortical networks in Parkinson’s disease by applied field effects. Front Hum Neurosci. 2013;7(565).Google Scholar
  70. 70.
    Krause V, Wach C, Südmeyer M, Ferrea S, Schnitzler A, Pollok B. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Front Hum Neurosci. 2014;7(928).Google Scholar
  71. 71.
    Vanneste S, Fregni F, De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Front Psychiatry. 2013;4:31–3.CrossRefGoogle Scholar
  72. 72.
    Vanneste S, Walsh V, Van De Heyning P, De Ridder D. Comparing immediate transient tinnitus suppression using tACS and tDCS: a placebo-controlled study. Exp Brain Res. 2013;226(1):25–31.CrossRefPubMedGoogle Scholar
  73. 73.
    •• Brittain JS, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013;23(5):436–40. This study applied a closed-loop design in patients, stimulating tACS depending on the phase of PD patients’ tremor. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Experimental Psychology Lab, Department of Psychology, Center of excellence “Hearing for all”, European Medical SchoolCarl von Ossietzky UniversitätOldenburgGermany
  2. 2.Research Center Neurosensory ScienceCarl von Ossietzky UniversitätOldenburgGermany

Personalised recommendations