Skip to main content
Log in

Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia

  • Personality and Impulse Control Disorders (R Lee, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Psychological stress can impact memory systems in several different ways. In individuals with healthy defense and coping systems, stress results in the formation of negatively valenced memories whose ability to induce emotional and somatic distress subsides with time. Vulnerable individuals, however, go on to develop stress-related disorders such as post-traumatic stress disorder (PTSD) and suffer from significant memory abnormalities. Whether expressed as intrusive trauma memories, partial amnesia, or dissociative amnesia, such abnormalities are thought to be the core source of patients’ symptoms, which are often debilitating and implicate an entire socio-cognitive-affective spectrum.

Recent Findings

With this in mind, and focusing on stress-responsive hippocampal microcircuits, this article highlights recent advances in the neurobiology of memory that allow us to (1) isolate and visualize memory circuits, (2) change their activity using genetic tools and state-dependent manipulations, and (3) directly examine their impact on socio-affective circuits and global network connectivity. By integrating these approaches, we are now in a position to address important questions that have troubled psychiatry for a long time—questions such as are traumatic memories special, and why are stress effects on memory diverse.

Summary

Furthering our fundamental understanding of memory in the framework of adaptive and maladaptive stress responses has the potential to boost the development of new treatments that can benefit patients suffering from psychological trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shobe KK, Kihlstrom J. Is traumatic memory special? Curr Dir Psychol Sci. 1997;6:70–4.

    Article  Google Scholar 

  2. •• Nadel L, Jacobs WJ. Traumatic memory is special. Curr Dir Psychol Sci. 1998;7(5):154–7. This is the first suggestion that trauma-related memories differ from nontraumatic memories at the circuit level.

    Article  Google Scholar 

  3. McGaugh JL, Roozendaal B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol. 2002;12(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  4. Desmedt A, Marighetto A, Piazza PV. Abnormal fear memory as a model for posttraumatic stress disorder. Biol Psychiatry. 2015;78(5):290–7.

    Article  PubMed  Google Scholar 

  5. Dejean C, Courtin J, Rozeske RR, Bonnet MC, Dousset V, Michelet T, et al. Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol Psychiatry. 2015;78(5):298–306.

    Article  PubMed  Google Scholar 

  6. Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research—past, present, and future. Biol Psychiatry. 2006;60(4):376–82.

    Article  PubMed  Google Scholar 

  7. McNally RJ. Implicit and explicit memory for trauma-related information in PTSD. Ann N Y Acad Sci. 1997;821:219–24.

    Article  CAS  PubMed  Google Scholar 

  8. Terr LC. Childhood traumas: an outline and overview. Am J Psychiatry. 1991;148(1):10–20.

    Article  CAS  PubMed  Google Scholar 

  9. van der Kolk BA. The body keeps the score: memory and the evolving psychobiology of posttraumatic stress. Harv Rev Psychiatry. 1994;1(5):253–65.

    Article  PubMed  Google Scholar 

  10. Freyd J. Betrayal trauma: The logic of forgetting childhood abuse. Harvard University Press; 1996.

  11. Whitfield CL. Memory and abuse: remembering and healing the effects of trauma. Health Commun. 1995.

  12. Horowitz MJ. Stress response syndromes. Jason Aronson. 1976.

  13. Berntsen D, Rubin DC. Involuntary memories and dissociative amnesia: assessing key assumptions in PTSD research. Clin Psychol Sci. 2014;2(2):174–86.

    Article  PubMed  Google Scholar 

  14. Wittekind CE, Jelinek L, Kleim B, Muhtz C, Moritz S, Berna F. Age effect on autobiographical memory specificity: A study on autobiographical memory specificity in elderly survivors of childhood trauma. J Behav Ther Exp Psychiatry. 2016;54:247–53.

    Article  PubMed  Google Scholar 

  15. Finsterwald C, Steinmetz AB, Travaglia A, Alberini CM. From memory impairment to posttraumatic stress disorder-like phenotypes: the critical role of an unpredictable second traumatic experience. J Neurosci. 2015;35(48):15903–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joels M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10(6):459–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Revest JM, Di Blasi F, Kitchener P, Rouge-Pont F, Desmedt A, Turiault M, et al. The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nat Neurosci. 2005;8(5):664–72.

    Article  CAS  PubMed  Google Scholar 

  18. Radulovic J, Ruhmann A, Liepold T, Spiess J. Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci. 1999;19(12):5016–25.

    CAS  PubMed  Google Scholar 

  19. Sar V. Developmental trauma, complex PTSD, and the current proposal of DSM-5. Eur J Psychotraumatol. 2011;2.

  20. Sar V, Ross C. Dissociative disorders as a confounding factor in psychiatric research. Psychiatr Clin N Am. 2006;29(1):129–44. ix.

    Article  Google Scholar 

  21. Lanius RA, Vermetten E, Loewenstein RJ, Brand B, Schmahl C, Bremner JD, et al. Emotion modulation in PTSD: clinical and neurobiological evidence for a dissociative subtype. Am J Psychiatry. 2010;167(6):640–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ross CA, B.B. K. Dissociation and schizophrenia. J Trauma Dissociation. 2004;5:69–83.

    Article  Google Scholar 

  23. Renard SB, Pijnenborg M, Lysaker PH. Dissociation and social cognition in schizophrenia spectrum disorder. Schizophr Res. 2012;137(1–3):219–23.

    Article  PubMed  Google Scholar 

  24. Dorahy MJ, Corry M, Shannon M, Webb K, McDermott B, Ryan M, et al. Complex trauma and intimate relationships: the impact of shame, guilt and dissociation. J Affect Disord. 2013;147(1–3):72–9.

    Article  PubMed  Google Scholar 

  25. Krammer S, Kleim B, Simmen-Janevska K, Maercker A. Childhood trauma and complex posttraumatic stress disorder symptoms in older adults: a study of direct effects and social-interpersonal factors as potential mediators. J Trauma Dissociation. 2015:1–16.

  26. Janet P. L’Automtisme psychologique. Alcan. 1889.

  27. Braun BG. Towards a theory of multiple personality and other dissociative phenomena. Psychiatr Clin N Am. 1984;7(1):171–93.

    CAS  Google Scholar 

  28. Spiegel D, Loewenstein RJ, Lewis-Fernandez R, Sar V, Simeon D, Vermetten E, et al. Dissociative disorders in DSM-5. Depress Anxiety. 2011;28(9):824–52.

    Article  PubMed  Google Scholar 

  29. Breuer J, Freud S. Studies on hysteria. Hogarth Press, 1955.

  30. van der Kolk BA, Fisler R. Dissociation and the fragmentary nature of traumatic memories: overview and exploratory study. J Trauma Stress. 1995;8(4):505–25.

    Article  PubMed  Google Scholar 

  31. Eich E. Mood as a mediator of place dependent memory. J Exp Psychol Gen. 1995;124(3):293–308.

    Article  CAS  PubMed  Google Scholar 

  32. Pompilio L, Kacelnik A, Behmer ST. State-dependent learned valuation drives choice in an invertebrate. Science. 2006;311(5767):1613–5.

    Article  CAS  PubMed  Google Scholar 

  33. John OP, Gross JJ. Healthy and unhealthy emotion regulation: personality processes, individual differences, and life span development. J Pers. 2004;72(6):1301–33.

    Article  PubMed  Google Scholar 

  34. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol. 1946;6:117–230.

    Article  CAS  Google Scholar 

  35. McEwen BS. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metab Clin Exp. 2005;54(5 Suppl 1):20–3.

    Article  CAS  PubMed  Google Scholar 

  36. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–75.

    Article  PubMed  CAS  Google Scholar 

  37. McClelland S, Korosi A, Cope J, Ivy A, Baram TZ. Emerging roles of epigenetic mechanisms in the enduring effects of early-life stress and experience on learning and memory. Neurobiol Learn Mem. 2011;96(1):79–88.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cohen H, Kaplan Z, Matar MA, Loewenthal U, Zohar J, Richter-Levin G. Long-lasting behavioral effects of juvenile trauma in an animal model of PTSD associated with a failure of the autonomic nervous system to recover. Eur Neuropsychopharmacol. 2007;17(6–7):464–77.

    Article  CAS  PubMed  Google Scholar 

  39. Valentino RJ, Bangasser D, Van Bockstaele EJ. Sex-biased stress signaling: the corticotropin-releasing factor receptor as a model. Mol Pharmacol. 2013;83(4):737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonne O, Vythilingam M, Inagaki M, Wood S, Neumeister A, Nugent AC, et al. Reduced posterior hippocampal volume in posttraumatic stress disorder. J Clin Psychiatry. 2008;69(7):1087–91.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen AC, Etkin A. Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Neuropsychopharmacology. 2013;38(10):1889–98.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kikuchi H, Fujii T, Abe N, Suzuki M, Takagi M, Mugikura S, et al. Memory repression: brain mechanisms underlying dissociative amnesia. J Cogn Neurosci. 2010;22(3):602–13.

    Article  PubMed  Google Scholar 

  43. O’Keefe J, Nadel L. The hippocampus as a cognitive map. Clarendon Press, 1978.

  44. Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992;99(2):195–231.

    Article  CAS  PubMed  Google Scholar 

  45. Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35(4):625–41.

    Article  CAS  PubMed  Google Scholar 

  46. Eichenbaum H, Cohen NJ. Representation in the hippocampus: what do hippocampal neurons code? Trends Neurosci. 1988;11(6):244–8.

    Article  CAS  PubMed  Google Scholar 

  47. Tulving E. Ecphoric processes in episodic memory. Philos T Roy Soc B. 1983;302(1110):361–71.

    Article  Google Scholar 

  48. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci. 2002;22(15):6810–8.

    CAS  PubMed  Google Scholar 

  49. Maras PM, Molet J, Chen Y, Rice C, Ji SG, Solodkin A, et al. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Mol Psychiatry. 2014;19(7):811–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fanselow MS. Factors governing one-trial contextual conditioning. Anim Learn Behav. 1990;18(3):264–70.

    Article  Google Scholar 

  51. Selden NR, Everitt BJ, Jarrard LE, Robbins TW. Complementary roles for the amygdala and hippocampus in aversive conditioning to explicit and contextual cues. Neuroscience. 1991;42(2):335–50.

    Article  CAS  PubMed  Google Scholar 

  52. Kim JJ, Fanselow MS. Modality-specific retrograde amnesia of fear. Science. 1992;256(5057):675–7.

    Article  CAS  PubMed  Google Scholar 

  53. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106(2):274–85.

    Article  CAS  PubMed  Google Scholar 

  54. Burwell RD, Saddoris MP, Bucci DJ, Wiig KA. Corticohippocampal contributions to spatial and contextual learning. J Neurosci. 2004;24(15):3826–36.

    Article  CAS  PubMed  Google Scholar 

  55. Barco A, Bailey CH, Kandel ER. Common molecular mechanisms in explicit and implicit memory. J Neurochem. 2006;97(6):1520–33.

    Article  CAS  PubMed  Google Scholar 

  56. Rolls ET. An attractor network in the hippocampus: theory and neurophysiology. Learn Mem. 2007;14(11):714–31.

    Article  PubMed  Google Scholar 

  57. Kesner RP, Rolls ET. A computational theory of hippocampal function, and tests of the theory: new developments. Neurosci Biobehav Rev. 2015;48:92–147.

    Article  PubMed  Google Scholar 

  58. Hunsaker MR, Tran GT, Kesner RP. A double dissociation of subcortical hippocampal efferents for encoding and consolidation/retrieval of spatial information. Hippocampus. 2008;18(7):699–709.

    Article  PubMed  Google Scholar 

  59. Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15(10):655–69.

    Article  CAS  PubMed  Google Scholar 

  60. Moser MB, Moser EI. Functional differentiation in the hippocampus. Hippocampus. 1998;8(6):608–19.

    Article  CAS  PubMed  Google Scholar 

  61. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65(1):7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Allsop SA, Vander Weele CM, Wichmann R, Tye KM. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front Behav Neurosci. 2014;8:241.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Finlay JM, Dunham GA, Isherwood AM, Newton CJ, Nguyen TV, Reppar PC, et al. Effects of prefrontal cortex and hippocampal NMDA NR1-subunit deletion on complex cognitive and social behaviors. Brain Res. 1600;2015:70–83.

    Google Scholar 

  64. Groeneweg FL, Karst H, de Kloet ER, Joels M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol. 2011.

  65. Ammassari-Teule M. Is structural remodeling in regions governing memory an univocal correlate of memory? Neurobiol Learn Mem. 2016;136:28–33.

    Article  PubMed  Google Scholar 

  66. Sandi C, Davies HA, Cordero MI, Rodriguez JJ, Popov VI, Stewart MG. Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur J Neurosci. 2003;17(11):2447–56.

    Article  PubMed  Google Scholar 

  67. Sebastian V, Estil JB, Chen D, Schrott LM, Serrano PA. Acute physiological stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus. PLoS One. 2013;8(10):e79077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pawlak R, Rao BS, Melchor JP, Chattarji S, McEwen B, Strickland S. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc Natl Acad Sci U S A. 2005;102(50):18201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fa M, Xia L, Anunu R, Kehat O, Kriebel M, Volkmer H, et al. Stress modulation of hippocampal activity—spotlight on the dentate gyrus. Neurobiol Learn Mem. 2014;112:53–60.

    Article  PubMed  Google Scholar 

  70. Davis M, Myers KM. The role of glutamate and gamma-aminobutyric acid in fear extinction: clinical implications for exposure therapy. Biol Psychiatry. 2002;52(10):998–1007.

    Article  CAS  PubMed  Google Scholar 

  71. Grant SG, O’Dell TJ. Multiprotein complex signaling and the plasticity problem. Curr Opin Neurobiol. 2001;11(3):363–8.

    Article  CAS  PubMed  Google Scholar 

  72. Vazdarjanova A, McNaughton BL, Barnes CA, Worley PF, Guzowski JF. Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J Neurosci. 2002;22(23):10067–71.

    CAS  PubMed  Google Scholar 

  73. Vazdarjanova A, Guzowski JF. Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci. 2004;24(29):6489–96.

    Article  CAS  PubMed  Google Scholar 

  74. Barth AL. Visualizing circuits and systems using transgenic reporters of neural activity. Curr Opin Neurobiol. 2007;17(5):567–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garner A, Mayford M. New approaches to neural circuits in behavior. Learn Mem. 2012;19(9):385–90.

    Article  CAS  PubMed  Google Scholar 

  76. Tronson NC, Schrick C, Guzman YF, Huh KH, Srivastava DP, Penzes P, et al. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear. J Neurosci. 2009;29(11):3387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, et al. Creating a false memory in the hippocampus. Science. 2013;341(6144):387–91. This is the first use of optogenetics to manipulate a memory.

    Article  CAS  PubMed  Google Scholar 

  78. Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature. 2016;534(7605):115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deng W, Mayford M, Gage FH. Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife. 2013;2:e00312.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science. 2007;317(5842):1230–3.

    Article  CAS  PubMed  Google Scholar 

  81. Tayler KK, Tanaka KZ, Reijmers LG, Wiltgen BJ. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr Biol. 2013;23(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  82. Xu W, Sudhof TC. A neural circuit for memory specificity and generalization. Science. 2013;339(6125):1290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci. 2012;13(4):251–66.

    Article  CAS  PubMed  Google Scholar 

  84. Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci. 2014;37:387–407.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu H, Pleil KE, Urban DJ, Moy SS, Kash TL, Roth BL. Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology. 2014;39(8):1880–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. • Cowansage KK, Shuman T, Dillingham BC, Chang A, Golshani P, Mayford M. Direct reactivation of a coherent neocortical memory of context. Neuron. 2014;84(2):432–41. This is the first successful use of a chemogenetic approach to reactivate a cortical memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. •• Jovasevic V, Corcoran KA, Leaderbrand K, Yamawaki N, Guedea AL, Chen HJ, et al. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat Neurosci. 2015;18(9):1265–71. This study shows that state-dependent fear memories can be formed under heightened activation of extrasynaptic GABAAR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. •• Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature. 2014;513(7518):426–30. An important paper demonstrating how the valence of memories can be changed from negative to positive during reactivation of memory coding circuits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ramirez S, Liu X, MacDonald CJ, Moffa A, Zhou J, Redondo RL, et al. Activating positive memory engrams suppresses depression-like behaviour. Nature. 2015;522(7556):335–9.

    Article  CAS  PubMed  Google Scholar 

  90. Squire LR. Lost forever or temporarily misplaced? The long debate about the nature of memory impairment. Learn Mem. 2006;13(5):522–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Girden E, Culler E. Conditioned responses in curarized striate muscle in dogs. J Comp Psychol. 1937;23(3):261–74.

    Article  Google Scholar 

  92. Goodwin DW, Powell B, Bremer D, Hoine H, Stern J. Alcohol and recall: state-dependent effects in man. Science. 1969;163(3873):1358–60.

    Article  CAS  PubMed  Google Scholar 

  93. Bustamante JA, Jordan A, Vila M, Gonzalez A, Insua A. State dependent learning in humans. Physiol Behav. 1970;5(7):793–6.

    Article  CAS  PubMed  Google Scholar 

  94. Lang AJ, Craske MG, Brown M, Ghaneian A. Fear-related state dependent memory. Cognit Emot. 2001;15:695–703.

    Article  Google Scholar 

  95. Overton DA. Historical context of state dependent learning and discriminative drug effects. Behav Pharmacol. 1991;2(4 And 5):253–64.

    PubMed  Google Scholar 

  96. Squire LR, Dede AJ. Conscious and unconscious memory systems. Cold Spring Harb Perspect Biol. 2015;7(3):a021667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hinrichsen JJ, Katahn M, Levenson RW. Alcohol-induced state-dependent learning in non-alcoholics. Pharmacol Biochem Behav. 1974;2(3):293–6.

    Article  CAS  PubMed  Google Scholar 

  98. Weingartner H, Adefris W, Eich JE, Murphy DL. Encoding-imagery specificity in alcohol state-dependent learning. J Exp Psychol Hum Learn. 1976;2(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  99. Duncan PM. The effect of external stimulus change on ethanol-produced dissociation. Pharmacol Biochem Behav. 1979;11(4):377–81.

    Article  CAS  PubMed  Google Scholar 

  100. Ley P, Jain VK, Swinson RP, Eaves D, Bradshaw PW, Kincey JA, et al. A state-dependent learning effect produced by amylobarbitone sodium. Br J Psychiatry. 1972;120(558):511–5.

    Article  CAS  PubMed  Google Scholar 

  101. Jensen HH, Hutchings B, Poulsen JC. Conditioned emotional responding under diazepam: a psychophysiological study of state dependent learning. Psychopharmacology (Berlin). 1989;98(3):392–7.

    Article  CAS  Google Scholar 

  102. Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA. Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol. 2002;136(7):965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hernandez LL, Valentine JD, Powell DA. Ethanol enhancement of Pavlovian conditioning. Behav Neurosci. 1986;100(4):494–503.

    Article  CAS  PubMed  Google Scholar 

  104. Wei W, Faria LC, Mody I. Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J Neurosci. 2004;24(38):8379–82.

    Article  CAS  PubMed  Google Scholar 

  105. Nusser Z, Mody I. Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol. 2002;87(5):2624–8.

    CAS  PubMed  Google Scholar 

  106. Mortensen M, Patel B, Smart TG. GABA potency at GABA(A) receptors found in synaptic and extrasynaptic zones. Front Cell Neurosci. 2011;6:1.

    PubMed  Google Scholar 

  107. Brickley SG, Mody I. Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron. 2012;73(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. •• Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015;348(6238):1007–13. This work shows that memories can be formed even when changes in synaptic plasticity, morphology, and protein synthesis do not occur, however, such memories are not accessible to recall.

    Article  CAS  PubMed  Google Scholar 

  109. Corcoran KA, Leaderbrand K, Jovasevic V, Guedea AL, Kassam F, Radulovic J. Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl Psychiatry. 2015;5:e657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gao C TN, Radulovic J. Modulation of behavior by scaffolding proteins of the postsynaptic density. Neurobiol Learn Mem. 2013;in press.

  111. Mesic I, Guzman YF, Guedea AL, Jovasevic V, Corcoran KA, Leaderbrand K, et al. Double dissociation of the roles of metabotropic glutamate receptor 5 and oxytocin receptor in discrete social behaviors. Neuropsychopharmacology. 2015.

  112. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell. 2010;141(1):154–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. • Corcoran KA, Frick BJ, Radulovic J, Kay LM. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiol Learn Mem. 2016;127:93–101. The authors demonstrate that coherent oscillatory activity between the hippocampus and retrosplenial cortex, typically occurring during memory encoding and retrieval, can be assessed by LFP recordings in freely moving mice.

    Article  PubMed  Google Scholar 

  114. Michaelides M, Hurd YL. DREAMM: a biobehavioral imaging methodology for dynamic in vivo whole-brain mapping of cell type-specific functional networks. Neuropsychopharmacology. 2015;40(1):239–40.

    Article  CAS  PubMed  Google Scholar 

  115. Chun MM, Jiang Y. Implicit, long-term spatial contextual memory. J Exp Psychol Learn Mem Cogn. 2003;29(2):224–34.

    Article  PubMed  Google Scholar 

  116. Chun MM, Phelps EA. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat Neurosci. 1999;2(9):844–7.

    Article  CAS  PubMed  Google Scholar 

  117. Conrad CD, LeDoux JE, Magarinos AM, McEwen BS. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci. 1999;113(5):902–13.

    Article  CAS  PubMed  Google Scholar 

  118. Huh KH, Guzman YF, Tronson NC, Guedea AL, Gao C, Radulovic J. Hippocampal Erk mechanisms linking prediction error to fear extinction: roles of shock expectancy and contextual aversive valence. Learn Mem. 2009;16(4):273–8.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Reus VI, Weingartner H, Post RM. Clinical implications of state-dependent learning. Am J Psychiatry. 1979;136(7):927–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Radulovic.

Ethics declarations

Conflict of Interest

The work of Dr. Radulovic is supported by research grants from NIMH (MH078064 and MH108837).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Personality and Impulse Control Disorder

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radulovic, J. Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia. Curr Behav Neurosci Rep 4, 49–58 (2017). https://doi.org/10.1007/s40473-017-0109-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-017-0109-6

Keywords

Navigation