Skip to main content

Advertisement

Log in

Neurocognitive Function as a Treatment Target for Tobacco Use Disorder

  • Addictions (J Grant, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Novel approaches are needed to improve the treatment of tobacco use disorder (TUD). Two distinct literatures have examined the impact of cognitive function in the maintenance of TUD. One approach has focused on automatic cognitive processes, and the second approach has addressed the role of executive cognitive processes. This review focuses on interventions that target automatic and cognitive processes for TUD.

Recent Findings

There appears to be evidence that attention re-training (AR) reduces automatic cognitions, but the effect on smoking requires further research. Several medications including varenicline, bupropion, and galantamine can improve executive processes and potentially reduce craving and smoking. However, whether the beneficial effects of these medications are mediated by cognitive improvement remains to be determined. Other strategies including the approach-avoidance task, transcranial direct current stimulation, and exercise require further study.

Summary

Most research focuses on targeting automatic and controlled cognitive processes, separately in relatively small samples. Future research should consider targeting both processes simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jamal A, Homa DM, O’Connor E, Babb SD, Caraballo RS, Singh T, et al. Current cigarette smoking among adults—United States, 2005–2014. MMWR Morb Mortal Wkly Rep. 2015;64(44):1233–40.

    Article  PubMed  Google Scholar 

  2. Lavinghouze SR, Malarcher A, Jama A, Neff L, Debrot K, Whalen L. Trends in quit attempts among adult cigarette smokers—United States, 2001–2013. MMWR Morb Mortal Wkly Rep. 2015;64(40):1129.

    Article  PubMed  Google Scholar 

  3. Caraballo RS, Kruger J, Asman K, Pederson L, Widome R, Kiefe CI, et al. Relapse among cigarette smokers: the CARDIA longitudinal study-1985–2011. Addict Behav. 2014;39(1):101–6.

    Article  PubMed  Google Scholar 

  4. Hughes JR, Peters EN, Naud S. Relapse to smoking after 1 year of abstinence: a meta-analysis. Addict Behav. 2008;33(12):1516–20.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grant BF, Hasin DS, Chou SP, Stinson FS, Dawson DA. Nicotine dependence and psychiatric disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2004;61(11):1107–15.

    Article  PubMed  Google Scholar 

  6. Le Cook B, Wayne GF, Kafali EN, Liu ZM, Shu C, Flores M. Trends in smoking among adults with mental illness and association between mental health treatment and smoking cessation. Jama-J Am Med Assoc. 2014;311(2):172–82.

    Article  CAS  Google Scholar 

  7. Campion J, Checinski K, Nurse J, McNeill A. Smoking by people with mental illness and benefits of smoke-free mental health services. Adv Psychiatr Treat. 2008;14(3):217–28.

    Article  Google Scholar 

  8. Waters AJ, Shiffman S, Sayette MA, Paty JA, Gwaltney CJ, Balabanis MH. Attentional bias predicts outcome in smoking cessation. Health Psychol. 2003;22(4):378.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Patterson F, Jepson C, Loughead J, Perkins K, Strasser AA, Siegel S, et al. Working memory deficits predict short-term smoking resumption following brief abstinence. Drug Alcohol Depend. 2010;106(1):61–4.

    Article  PubMed  Google Scholar 

  10. Bates ME, Pawlak AP, Tonigan JS, Buckman JF. Cognitive impairment influences drinking outcome by altering therapeutic mechanisms of change. Psychol Addict Behav. 2006;20(3):241.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Keshavan MS, Vinogradov S, Rumsey J, Sherrill J, Wagner A. Cognitive training in mental disorders: update and future directions. Am J Psychiatry. 2014.

  12. Goschke T. Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research. Int J Methods Psychiatr Res. 2014;23(S1):41–57.

    Article  PubMed  Google Scholar 

  13. Sofuoglu M, DeVito EE, Waters AJ, Carroll KM. Cognitive enhancement as a treatment for drug addictions. Neuropharmacology. 2013;64:452–63.

    Article  CAS  PubMed  Google Scholar 

  14. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schumann G, Binder EB, Holte A, de Kloet ER, Oedegaard KJ, Robbins TW, et al. Stratified medicine for mental disorders. Eur Neuropsychopharmacol. 2014;24(1):5–50.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes JR, Keenan RM, Yellin A. Effect of tobacco withdrawal on sustained attention. Addict Behav. 1989;14(5):577–80.

    Article  CAS  PubMed  Google Scholar 

  17. Leventhal AM, Waters AJ, Moolchan ET, Heishman SJ, Pickworth WB. A quantitative analysis of subjective, cognitive, and physiological manifestations of the acute tobacco abstinence syndrome. Addict Behav. 2010;35(12):1120–30.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Durazzo TC, Meyerhoff DJ, Nixon SJ. A comprehensive assessment of neurocognition in middle-aged chronic cigarette smokers. Drug Alcohol Depend. 2012;122(1):105–11.

    Article  PubMed  Google Scholar 

  19. Nooyens AC, van Gelder BM, Verschuren WM. Smoking and cognitive decline among middle-aged men and women: the Doetinchem Cohort Study. Am J Public Health. 2008;98(12):2244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Paul RH, Brickman AM, Cohen RA, Williams LM, Niaura R, Pogun S, et al. Cognitive status of young and older cigarette smokers: data from the international brain database. J Clin Neurosci. 2006;13(4):457–65.

    Article  PubMed  Google Scholar 

  21. Sabia S, Marmot M, Dufouil C, Singh-Manoux A. Smoking history and cognitive function in middle age from the Whitehall II study. Arch Intern Med. 2008;168(11):1165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Swan GE, Lessov-Schlaggar CN. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev. 2007;17(3):259–73.

    Article  PubMed  Google Scholar 

  23. Wagner M, Schulze-Rauschenbach S, Petrovsky N, Brinkmeyer J, von der Goltz C, Gründer G, et al. Neurocognitive impairments in non-deprived smokers—results from a population-based multi-center study on smoking-related behavior. Addict Biol. 2013;18(4):752–61.

    Article  CAS  PubMed  Google Scholar 

  24. Ernst M, Heishman SJ, Spurgeon L, London ED. Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology. 2001;25(3):313–9.

    Article  CAS  PubMed  Google Scholar 

  25. Powell J, Dawkins L, West R, Powell J, Pickering A. Relapse to smoking during unaided cessation: clinical, cognitive and motivational predictors. Psychopharmacology. 2010;212(4):537–49.

    Article  CAS  PubMed  Google Scholar 

  26. Janes AC, Pizzagalli DA, Richardt S, Chuzi S, Pachas G, Culhane MA, et al. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry. 2010;67(8):722–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wiers RW, Gladwin TE, Hofmann W, Salemink E, Ridderinkhof KR. Cognitive bias modification and cognitive control training in addiction and related psychopathology mechanisms, clinical perspectives, and ways forward. Clinical Psychological Science. 2013:2167702612466547.

  28. Kahneman D. Thinking, fast and slow: Macmillan; 2011.

  29. Field M, Cox WM. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug Alcohol Depend. 2008;97(1):1–20.

    Article  PubMed  Google Scholar 

  30. Posner MI, Petersen SE. The attention system of the human brain. DTIC Document; 1989.

  31. Mogg K, Bradley BP, Field M, De Houwer J. Eye movements to smoking-related pictures in smokers: relationship between attentional biases and implicit and explicit measures of stimulus valence. Addiction. 2003;98(6):825–36.

    Article  PubMed  Google Scholar 

  32. Wiers RW, Eberl C, Rinck M, Becker ES, Lindenmeyer J. Retraining automatic action tendencies changes alcoholic patients’ approach bias for alcohol and improves treatment outcome. Psychol Sci. 2011;22(4):490–7.

    Article  PubMed  Google Scholar 

  33. Wiers CE, Kühn S, Javadi AH, Korucuoglu O, Wiers RW, Walter H, et al. Automatic approach bias towards smoking cues is present in smokers but not in ex-smokers. Psychopharmacology. 2013;229(1):187–97.

    Article  CAS  PubMed  Google Scholar 

  34. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18(3):247–91.

    Article  CAS  PubMed  Google Scholar 

  35. Friedman NP, Miyake A, Young SE, Defries JC, Corley RP, Hewitt JK. Individual differences in executive functions are almost entirely genetic in origin. Journal of experimental psychology General. 2008;137(2):201–25.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arnsten AF, Wang M, Paspalas CD. Dopamine’s actions in primate prefrontal cortex: challenges for treating cognitive disorders. Pharmacol Rev. 2015;67(3):681–96.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chambers CD, Garavan H, Bellgrove MA. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev. 2009;33(5):631–46.

    Article  PubMed  Google Scholar 

  38. Posner MI, Rothbart MK. Attention, self-regulation and consciousness. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353(1377):1915–27.

    Article  CAS  Google Scholar 

  39. Rueda MR, Rothbart MK, McCandliss BD, Saccomanno L, Posner MI. Training, maturation, and genetic influences on the development of executive attention. Proc Natl Acad Sci U S A. 2005;102(41):14931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Attwood AS, O'Sullivan H, Leonards U, Mackintosh B, Munafò MR. Attentional bias training and cue reactivity in cigarette smokers. Addiction. 2008;103(11):1875–82.

    Article  PubMed  Google Scholar 

  41. Field M, Duka T, Tyler E, Schoenmakers T. Attentional bias modification in tobacco smokers. Nicotine & Tobacco Research. 2009;11(7):812–22.

    Article  Google Scholar 

  42. McHugh RK, Murray HW, Hearon BA, Calkins AW, Otto MW. Attentional bias and craving in smokers: the impact of a single attentional training session. Nicotine & tobacco research. 2010;12(12):1261–4.

    Article  Google Scholar 

  43. Kerst WF, Waters AJ. Attentional retraining administered in the field reduces smokers’ attentional bias and craving. Health Psychol. 2014;33(10):1232.

    Article  PubMed  Google Scholar 

  44. Lopes FM, Pires AV, Bizarro L. Attentional bias modification in smokers trying to quit: a longitudinal study about the effects of number of sessions. J Subst Abus Treat. 2014;47(1):50–7.

    Article  Google Scholar 

  45. Robinson CD. A mobile device-based intervention to reduce the influence of smoking cues among African American cigarette smokers. (2015).

  46. •• Begh R, Munafò MR, Shiffman S, Ferguson SG, Nichols L, Mohammed MA, et al. Lack of attentional retraining effects in cigarette smokers attempting cessation: a proof of concept double-blind randomised controlled trial. Drug Alcohol Depend. 2015;149:158–65. The first published study to examine the effect of Attentional Re-training on smoking behavior among smokers attempting to quit.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elfeddali I, de Vries H, Bolman C, Pronk T, Wiers RW. A randomized controlled trial of Web-based attentional bias modification to help smokers quit. Health Psychol. 2016;35(8):870.

    Article  PubMed  Google Scholar 

  48. Macy JT, Chassin L, Presson CC, Sherman JW. Changing implicit attitudes toward smoking: results from a web-based approach-avoidance practice intervention. J Behav Med. 2015;38(1):143–52.

    Article  PubMed  Google Scholar 

  49. Kong G, Larsen H, Cavallo DA, Becker D, Cousijn J, Salemink E, et al. Re-training automatic action tendencies to approach cigarettes among adolescent smokers: a pilot study. The American journal of drug and alcohol abuse. 2015;41(5):425–32.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Machulska A, Zlomuzica A, Rinck M, Assion H-J, Margraf J. Approach bias modification in inpatient psychiatric smokers. J Psychiatr Res. 2016;76:44–51.

    Article  PubMed  Google Scholar 

  51. Van Rensburg KJ, Taylor A, Hodgson T. The effects of acute exercise on attentional bias towards smoking-related stimuli during temporary abstinence from smoking. Addiction. 2009;104(11):1910–7.

    Article  PubMed  Google Scholar 

  52. • Meng Z, Liu C, Yu C, Ma Y. Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates smoking behavior. J Psychiatr Res. 2014;54:19–25. One of few studies that examine the effect Transcranial direct current stimulation of the frontal-parietal-temporal area on attentional bias.

    Article  PubMed  Google Scholar 

  53. Patterson F, Jepson C, Strasser AA, Loughead J, Perkins KA, Gur RC, et al. Varenicline improves mood and cognition during smoking abstinence. Biol Psychiatry. 2009;65(2):144–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ashare RL, McKee SA. Effects of varenicline and bupropion on cognitive processes among nicotine-deprived smokers. Exp Clin Psychopharmacol. 2012;20(1):63.

    Article  CAS  PubMed  Google Scholar 

  55. • Rhodes JD, Hawk Jr LW, Ashare RL, Schlienz NJ, Mahoney MC. The effects of varenicline on attention and inhibitory control among treatment-seeking smokers. Psychopharmacology. 2012;223(2):131–8. An important examination of the association between varenicline, cognition, and smoking.

    Article  CAS  PubMed  Google Scholar 

  56. Sofuoglu M, Herman AI, Li Y, Waters AJ. Galantamine attenuates some of the subjective effects of intravenous nicotine and improves performance on a Go No-Go task in abstinent cigarette smokers: a preliminary report. Psychopharmacology. 2012;224(3):413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ashare RL, Ray R, Lerman C, Strasser AA. Cognitive effects of the acetylcholinesterase inhibitor, donepezil, in healthy, non-treatment seeking smokers: a pilot feasibility study. Drug Alcohol Depend. 2012;126(1):263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Austin A, Duka T, Rusted J, Jackson A. Effect of varenicline on aspects of inhibitory control in smokers. Psychopharmacology. 2014;231(18):3771–85.

    Article  CAS  PubMed  Google Scholar 

  59. •• Van Rensburg KJ, Taylor AH. The effects of acute exercise on cognitive functioning and cigarette cravings during temporary abstinence from smoking. Hum Psychopharmacol Clin Exp. 2008;23(3):193–9. One of few studies to investigate the association between exercise, cognition and smoking behavior.

    Article  Google Scholar 

  60. Xu J, Fregni F, Brody A, Rahman A. Transcranial direct current stimulation reduces negative affect but not cigarette craving in overnight abstinent smokers. Frontiers in Psychiatry. 2013; 4 (112).

  61. Fecteau S, Agosta S, Hone-Blanchet A, Fregni F, Boggio P, Ciraulo D, et al. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend. 2014;140:78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fonder MA, Sacco KA, Termine A, Boland BS, Seyal AA, Dudas MM, et al. Smoking cue reactivity in schizophrenia: effects of a nicotinic receptor antagonist. Biol Psychiatry. 2005;57(7):802–8.

    Article  CAS  PubMed  Google Scholar 

  63. MacLeod C, Rutherford E, Campbell L, Ebsworthy G, Holker L. Selective attention and emotional vulnerability: assessing the causal basis of their association through the experimental manipulation of attentional bias. J Abnorm Psychol. 2002;111(1):107.

    Article  PubMed  Google Scholar 

  64. Sofuoglu M, Mooney M. Cholinergic functioning in stimulant addiction. CNS drugs. 2009;23(11):939–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Damaj MI, Carroll FI, Eaton JB, Navarro HA, Blough BE, Mirza S, et al. Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotinic receptors. Mol Pharmacol. 2004;66(3):675–82.

    Article  CAS  PubMed  Google Scholar 

  66. Eberl C, Wiers RW, Pawelczack S, Rinck M, Becker ES, Lindenmeyer J. Approach bias modification in alcohol dependence: do clinical effects replicate and for whom does it work best? Dev Cogn Neurosci. 2013;4:38–51.

    Article  PubMed  Google Scholar 

  67. Garrison GD, Dugan SE. Varenicline: a first-line treatment option for smoking cessation. Clin Ther. 2009;31(3):463–91.

    Article  CAS  PubMed  Google Scholar 

  68. Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458–63.

    Article  CAS  PubMed  Google Scholar 

  69. Houben K, Wiers RW. Response inhibition moderates the relationship between implicit associations and drinking behavior. Alcohol Clin Exp Res. 2009;33(4):626–33.

    Article  PubMed  Google Scholar 

  70. Thush C, Wiers RW, Ames SL, Grenard JL, Sussman S, Stacy AW. Interactions between implicit and explicit cognition and working memory capacity in the prediction of alcohol use in at-risk adolescents. Drug Alcohol Depend. 2008;94(1):116–24.

    Article  PubMed  Google Scholar 

  71. Grenard JL, Ames SL, Wiers RW, Thush C, Sussman S, Stacy AW. Working memory capacity moderates the predictive effects of drug-related associations on substance use. Psychology of addictive behaviors : journal of the Society of Psychologists in Addictive Behaviors. 2008;22(3):426–32.

    Article  Google Scholar 

  72. Evans DE, Craig C, Oliver JA, Drobes DJ. The smoking N-back: a measure of biased cue processing at varying levels of cognitive load. Nicotine & Tobacco Research. 2010:ntq214.

  73. DeVito EE, Carroll KM, Sofuoglu M. Toward refinement of our understanding of the fundamental nature of addiction. Biol Psychiatry. 2016;80(3):172–3.

    Article  PubMed  Google Scholar 

  74. Hakamata Y, Lissek S, Bar-Haim Y, Britton JC, Fox NA, Leibenluft E, et al. Attention bias modification treatment: a meta-analysis toward the establishment of novel treatment for anxiety. Biol Psychiatry. 2010;68(11):982–90.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cendrine D. Robinson.

Ethics declarations

Conflict of Interest

Dr. Cendrine D. Robinson, Dr. Andrew J. Waters, Dr. Nicole Kang, and Dr. Mehmet Sofuoglu declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Addictions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, C.D., Waters, A.J., Kang, N. et al. Neurocognitive Function as a Treatment Target for Tobacco Use Disorder. Curr Behav Neurosci Rep 4, 10–20 (2017). https://doi.org/10.1007/s40473-017-0105-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-017-0105-x

Keywords

Navigation