Current Behavioral Neuroscience Reports

, Volume 3, Issue 4, pp 275–284 | Cite as

Using Induced Pluripotent Stem Cells to Investigate Complex Genetic Psychiatric Disorders

  • Stephanie J. Temme
  • Brady J. Maher
  • Kimberly M. ChristianEmail author
Genetics and Neuroscience (B Maher, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetics and Neuroscience


Purpose of Review

Induced pluripotent stem cells (iPSCs) can be generated from human patient tissue samples, differentiated into any somatic cell type, and studied under controlled culture conditions. We review how iPSCs are used to investigate genetic factors and biological mechanisms underlying psychiatric disorders, and considerations for synthesizing data across studies.

Recent Findings

Results from patient specific-iPSC studies often reveal cellular phenotypes consistent with postmortem and brain imaging studies. Unpredicted findings illustrate the power of iPSCs as a discovery tool, but may also be attributable to limitations in modeling dynamic neural networks or difficulty in identifying the most affected neural subtype or developmental stage.


Technological advances in differentiation protocols and organoid generation will enhance our ability to model the salient pathology underlying psychiatric disorders using iPSCs. The field will also benefit from context-driven interpretations of iPSC studies that recognize all potential sources of variability, including differences in patient symptomatology, genetic risk factors, and affected cellular subtype.


iPSCs Schizophrenia Bipolar disorder Autism spectrum disorders Psychiatric Cellular reprogramming 



B.J.M. was partially supported by NIH (R01MH110487), the Pitt Hopkins Research Foundation, and the Brace Cove Foundation. K.M.C. was partially supported by NIH grants NS093772, NS097206, and MH106434.

Compliance with Ethics Standards

Conflict of Interest

Stephanie J. Temme, Brady J. Maher, and Dr. Kimberly M. Christian declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8. doi: 10.1038/13810.CrossRefPubMedGoogle Scholar
  2. 2.
    Kirov G. CNVs in neuropsychiatric disorders. Hum Mol Genet. 2015;24(R1):R45–9. doi: 10.1093/hmg/ddv253.CrossRefPubMedGoogle Scholar
  3. 3.
    Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol. 2015;14(11):1109–20. doi: 10.1016/S1474-4422(15)00044-7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–52. doi: 10.1038/nature08185.Google Scholar
  5. 5.
    Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R, et al. Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry. 2006;11(3):252–60. doi: 10.1038/ Scholar
  6. 6.
    Tansey KE, Rees E, Linden DE, Ripke S, Chambert KD, Moran JL, et al. Common alleles contribute to schizophrenia in CNV carriers. Mol Psychiatry. 2016;21(8):1153. doi: 10.1038/mp.2015.170.CrossRefPubMedGoogle Scholar
  7. 7.
    Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13(10):1161–9. doi: 10.1038/nn.2647.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. doi: 10.1016/j.cell.2007.11.019.CrossRefPubMedGoogle Scholar
  9. 9.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80. doi: 10.1038/nbt.1529.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. 2015;20(3):361–8. doi: 10.1038/mp.2014.22.CrossRefPubMedGoogle Scholar
  11. 11.
    Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165(5):1238–54. doi: 10.1016/j.cell.2016.04.032.CrossRefPubMedGoogle Scholar
  12. 12.
    Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park JW, et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One. 2010;5(7):e11853. doi: 10.1371/journal.pone.0011853.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang SC. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc. 2013;8(9):1670–9. doi: 10.1038/nprot.2013.106.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Boyer LF, Campbell B, Larkin S, Mu Y, Gage FH. Dopaminergic differentiation of human pluripotent cells. Curr Protoc Stem Cell Biol. 2012; Chapter 1:Unit1H 6. doi: 10.1002/9780470151808.sc01h06s22.PubMedGoogle Scholar
  15. 15.
    Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q, et al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet. 2014;23(11):2968–80. doi: 10.1093/hmg/ddu008.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527(7576):95–9. doi: 10.1038/nature15526.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney Jr WE, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52(4):258–66.CrossRefPubMedGoogle Scholar
  18. 18.
    Egbujo CN, Sinclair D, Hahn CG. Dysregulations of synaptic vesicle trafficking in schizophrenia. Curr Psychiatry Rep. 2016;18(8):77. doi: 10.1007/s11920-016-0710-5.CrossRefPubMedGoogle Scholar
  19. 19.
    Volk DW, Sampson AR, Zhang Y, Edelson JR, Lewis DA. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders. Psychol Med. 2016;46(12):2501–12. doi: 10.1017/S0033291716001446.CrossRefPubMedGoogle Scholar
  20. 20.
    Murai K, Sun G, Ye P, Tian E, Yang S, Cui Q, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun. 2016;7:10965. doi: 10.1038/ncomms10965.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. 2014;515(7527):414–8. doi: 10.1038/nature13716.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e25255. doi: 10.1371/journal.pone.0025255.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cheung AY, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, et al. Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet. 2011;20(11):2103–15. doi: 10.1093/hmg/ddr093.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Larimore J, Ryder PV, Kim KY, Ambrose LA, Chapleau C, Calfa G, et al. MeCP2 regulates the synaptic expression of a Dysbindin-BLOC-1 network component in mouse brain and human induced pluripotent stem cell-derived neurons. PLoS One. 2013;8(6):e65069. doi: 10.1371/journal.pone.0065069.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–39. doi: 10.1016/j.cell.2010.10.016.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Belinsky GS, Rich MT, Sirois CL, Short SM, Pedrosa E, Lachman HM, et al. Patch-clamp recordings and calcium imaging followed by single-cell PCR reveal the developmental profile of 13 genes in iPSC-derived human neurons. Stem Cell Res. 2014;12(1):101–18. doi: 10.1016/j.scr.2013.09.014.CrossRefPubMedGoogle Scholar
  27. 27.
    Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, et al. Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron. 2014;81(2):306–13. doi: 10.1016/j.neuron.2013.10.053.CrossRefPubMedGoogle Scholar
  28. 28.
    Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S, et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet. 2011;25(3):88–103. doi: 10.3109/01677063.2011.597908.CrossRefPubMedGoogle Scholar
  29. 29.
    Doers ME, Musser MT, Nichol R, Berndt ER, Baker M, Gomez TM, et al. iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells Dev. 2014;23(15):1777–87. doi: 10.1089/scd.2014.0030.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu J, Koscielska KA, Cao Z, Hulsizer S, Grace N, Mitchell G, et al. Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet. 2012;21(17):3795–805. doi: 10.1093/hmg/dds207.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L, et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One. 2011;6(10):e26203. doi: 10.1371/journal.pone.0026203.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Das DK, Tapias V, D'Aiuto L, Chowdari KV, Francis L, Zhi Y, et al. Genetic and morphological features of human iPSC-derived neurons with chromosome 15q11.2 (BP1-BP2) deletions. Mol Neuropsychiatry. 2015;1(2):116–23. doi: 10.1159/000430916.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Germain ND, Chen PF, Plocik AM, Glatt-Deeley H, Brown J, Fink JJ, et al. Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Mol Autism. 2014;5:44. doi: 10.1186/2040-2392-5-44.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yoon KJ, Nguyen HN, Ursini G, Zhang F, Kim NS, Wen Z, et al. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell. 2014;15(1):79–91. doi: 10.1016/j.stem.2014.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X, et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry. 2015;20(11):1350–65. doi: 10.1038/mp.2014.141.CrossRefPubMedGoogle Scholar
  36. 36.
    Krey JF, Pasca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R, et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013;16(2):201–9. doi: 10.1038/nn.3307.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pasca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Pasca AM, et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med. 2011;17(12):1657–62. doi: 10.1038/nm.2576.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J, et al. A role for noncoding variation in schizophrenia. Cell Rep. 2014;9(4):1417–29. doi: 10.1016/j.celrep.2014.10.015.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tian Y, Voineagu I, Pasca SP, Won H, Chandran V, Horvath S, et al. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med. 2014;6(10):75. doi: 10.1186/s13073-014-0075-5.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R, Sebastiano V, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature. 2013;503(7475):267–71. doi: 10.1038/nature12618.PubMedGoogle Scholar
  41. 41.
    Wang P, Lin M, Pedrosa E, Hrabovsky A, Zhang Z, Guo W, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism. 2015;6:55. doi: 10.1186/s13229-015-0048-6.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee IS, Carvalho CM, Douvaras P, Ho SM, Hartley BJ, Zuccherato LW, et al. Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. NPJ Schizophr. 2015;1.Google Scholar
  43. 43.
    Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010;107(9):4335–40. doi: 10.1073/pnas.0910012107.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jones JR, Zhang SC. Engineering human cells and tissues through pluripotent stem cells. Curr Opin Biotechnol. 2016;40:133–8. doi: 10.1016/j.copbio.2016.03.010.CrossRefPubMedGoogle Scholar
  45. 45.
    Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci. 2016;19(9):1131–41. doi: 10.1038/nn.4366.CrossRefPubMedGoogle Scholar
  46. 46.
    Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry. 1998;65(4):446–53.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94. doi: 10.1016/j.brainres.2009.09.120.CrossRefPubMedGoogle Scholar
  48. 48.
    Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, et al. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol. 2004;55(4):530–40. doi: 10.1002/ana.20032.CrossRefPubMedGoogle Scholar
  49. 49.
    Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49(1–2):1–52.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cocchi E, Drago A, Serretti A. Hippocampal pruning as a new theory of schizophrenia Etiopathogenesis. Mol Neurobiol. 2016;53(3):2065–81. doi: 10.1007/s12035-015-9174-6.CrossRefPubMedGoogle Scholar
  51. 51.
    Pocklington AJ, O'Donovan M, Owen MJ. The synapse in schizophrenia. Eur J Neurosci. 2014;39(7):1059–67. doi: 10.1111/ejn.12489.CrossRefPubMedGoogle Scholar
  52. 52.
    Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry. 2012;17(4):402–11. doi: 10.1038/mp.2011.10.CrossRefPubMedGoogle Scholar
  53. 53.
    Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000;9(9):1415–23.CrossRefPubMedGoogle Scholar
  54. 54.
    Sachs NA, Sawa A, Holmes SE, Ross CA, DeLisi LE, Margolis RL. A frameshift mutation in disrupted in schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry. 2005;10(8):758–64. doi: 10.1038/ Scholar
  55. 55.
    Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A. Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci. 2009;29(41):12768–75. doi: 10.1523/JNEUROSCI.3355-09.2009.CrossRefPubMedGoogle Scholar
  56. 56.
    Maher BJ, LoTurco JJ. Disrupted-in-schizophrenia (DISC1) functions presynaptically at glutamatergic synapses. PLoS One. 2012;7(3):e34053. doi: 10.1371/journal.pone.0034053.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702. doi: 10.1016/j.neuron.2011.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL, et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry. 2011;16(4):358–60. doi: 10.1038/mp.2011.13.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Barbosa AC, Kim MS, Ertunc M, Adachi M, Nelson ED, McAnally J, et al. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci U S A. 2008;105(27):9391–6. doi: 10.1073/pnas.0802679105.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473(7346):221–5. doi: 10.1038/nature09915.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Topol A, Zhu S, Tran N, Simone A, Fang G, Brennand KJ. Altered WNT signaling in human induced pluripotent stem cell neural progenitor cells derived from four schizophrenia patients. Biol Psychiatry. 2015;78(6):e29–34. doi: 10.1016/j.biopsych.2014.12.028.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hook V, Brennand KJ, Kim Y, Toneff T, Funkelstein L, Lee KC, et al. Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Reports. 2014;3(4):531–8. doi: 10.1016/j.stemcr.2014.08.001.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, et al. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci. 2008;121(Pt 14):2301–7. doi: 10.1242/jcs.026906.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, et al. Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci. 2008;11(7):741–3. doi: 10.1038/nn.2127.CrossRefPubMedGoogle Scholar
  65. 65.
    Marfella CG, Imbalzano AN. The Chd family of chromatin remodelers. Mutat Res. 2007;618(1–2):30–40. doi: 10.1016/j.mrfmmm.2006.07.012.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460(7256):744–7. doi: 10.1038/nature08186.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Lambert D, Middle F, Hamshere ML, Segurado R, Raybould R, Corvin A, et al. Stage 2 of the Wellcome Trust UK-Irish bipolar affective disorder sibling-pair genome screen: evidence for linkage on chromosomes 6q16-q21, 4q12-q21, 9p21, 10p14-p12 and 18q22. Mol Psychiatry. 2005;10(9):831–41. doi: 10.1038/ Scholar
  68. 68.
    Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74(2):285–99. doi: 10.1016/j.neuron.2012.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9. doi: 10.1038/nature12517.CrossRefPubMedGoogle Scholar
  70. 70.
    Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism Spectrum disorders. Cell. 2015;162(2):375–90. doi: 10.1016/j.cell.2015.06.034.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rubenstein JL. Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol. 2010;23(2):118–23. doi: 10.1097/WCO.0b013e328336eb13.CrossRefPubMedGoogle Scholar
  72. 72.
    Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008;83(1):89–93. doi: 10.1016/j.ajhg.2008.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Tang X, Kim J, Zhou L, Wengert E, Zhang L, Wu Z, et al. KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc Natl Acad Sci U S A. 2016;113(3):751–6. doi: 10.1073/pnas.1524013113.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Craddock N, Sklar P. Genetics of bipolar disorder. Lancet. 2013;381(9878):1654–62. doi: 10.1016/S0140-6736(13)60855-7.CrossRefPubMedGoogle Scholar
  75. 75.
    Muhleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J, et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun. 2014;5:3339. doi: 10.1038/ncomms4339.CrossRefPubMedGoogle Scholar
  76. 76.
    O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci. 2016;73:63–83. doi: 10.1016/j.mcn.2015.11.006.CrossRefPubMedGoogle Scholar
  77. 77.
    Chen HM, DeLong CJ, Bame M, Rajapakse I, Herron TJ, McInnis MG, et al. Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Transl Psychiatry. 2014;4:e375. doi: 10.1038/tp.2014.12.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry. 2015;20(6):703–17. doi: 10.1038/mp.2015.7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Chen Y, Xiong M, Dong Y, Haberman A, Cao J, Liu H, et al. Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson's disease. Cell Stem Cell. 2016;18(6):817–26. doi: 10.1016/j.stem.2016.03.014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Stephanie J. Temme
    • 1
    • 2
    • 3
  • Brady J. Maher
    • 3
    • 4
    • 5
  • Kimberly M. Christian
    • 1
    • 2
    Email author
  1. 1.Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Lieber Institute for Brain DevelopmentBaltimoreUSA
  4. 4.Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations