Skip to main content

Advertisement

Log in

The Neurobiological Basis for Social Affiliation in Autism Spectrum Disorder and Schizophrenia

  • Psychosis (A Ahmed, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Social interaction and communication are complex behavioral paradigms involving many components. Many different neurotransmitters, hormones, sensory inputs, and brain regions are involved in the act of social engagement and verbal or nonverbal communication. Autism spectrum disorder (ASD) and schizophrenia are two neurodevelopmental disorders that have social and language deficits as hallmark symptoms but show very different etiologies. The output of social dysfunction is common to both ASD and schizophrenia, but this likely arises from very different pathophysiological means. This review will attempt to compile and interpret human and animal studies showing the neurobiological basis for the development of social and language deficits in ASD and schizophrenia as well as a comparison of the two disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barbaro J, Dissanayake C. Early markers of autism spectrum disorders in infants and toddlers prospectively identified in the social attention and communication study. Autism. 2012;17:64–86.

    Article  PubMed  Google Scholar 

  2. Droucker D, Curtin S, Vouloumanos A. Linking infant-directed speech and face preferences to language outcomes in infants at risk for autism spectrum disorder. J Speech Lang Hear Res. 2013;56:567–76.

    Article  PubMed  Google Scholar 

  3. de Klerk CCJM, Gliga T, Charman T, Johnson MH. Face engagement during infancy predicts later face recognition ability in younger siblings of children with autism. Dev Sci. 2014;17:596–611.

    Article  PubMed  Google Scholar 

  4. Young GS, Merin N, Rogers SJ, Ozonoff S. Gaze behavior and affect at 6 months: predicting clinical outcomes and language development in typically developing infants and infants at risk for autism. Dev Sci. 2009;12:798–814.

    Article  PubMed  PubMed Central  Google Scholar 

  5. White SW, Roberson-Nay R. Anxiety, social deficits, and loneliness in youth with autism spectrum disorders. J Autism Dev Disord. 2009;39:1006–13.

    Article  PubMed  Google Scholar 

  6. Picchioni MM, Murray RM. Schizophrenia. BMJ. 2007;335:91–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC; 2013. This is the standard for diagnosis of both Autism Spectrum Disorder and Schizophrenia. As both disorders lack particular biomarkers, psychological evaluation and symptomatic scores are currently the best method for diagnosis.

  8. “NAMI: National Alliance on Mental Illness | Mental Illnesses”. NAMI: National Alliance on Mental Illness - Mental Health Support, Education and Advocacy. N.p., 2013. Web. 5 Apr. 2016.

  9. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.

    Article  PubMed  Google Scholar 

  10. Pješčić KD, Nenadović MM, Jašović-Gašić M, Trajković G, Kostić M, Ristić-Dimitrijević R. Influence of psycho-social factors on the emergence of depression and suicidal risk in patients with schizophrenia. Psychiatr Danub. 2014;26:226–30.

    PubMed  Google Scholar 

  11. Geyer MA, Wilkinson LS, Humby T, Robbins TW. Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biol Psychiatry. 1993;34:361–72.

    Article  CAS  PubMed  Google Scholar 

  12. Robertson BR, Prestia D, Twamley EW, Patterson TL, Bowie CR, Harvey PD. Social competence versus negative symptoms as predictors of real world social functioning in schizophrenia. Schizophr Res. 2014;160:136–41.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Derks E, Cahn W, Kahn RS, Linszen DH, Van Os J, Wiersma D, et al. Social cognition and quality of life in schizophrenia. Schizophr Res. 2012;137:212–8.

    Article  PubMed  Google Scholar 

  14. Kupper Z, Ramseyer F, Hoffmann H, Kalbermatten S, Tschacher W. Video-based quantification of body movement during social interaction indicates the severity of negative symptoms in patients with schizophrenia. Schizophr Res. 2010;121:90–100.

    Article  PubMed  Google Scholar 

  15. Kupper Z, Ramseyer F, Hoffmann H, Tschacher W. Nonverbal synchrony in social interactions of patients with schizophrenia indicates socio-communicative deficits. PLoS One. 2015;10:e0145882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kanner L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968;35:100–36.

  17. Squillace M, Dodero L, Federici M, Migliarini S, Errico F, Napolitano F, et al. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Transl Psychiatry. 2014;4:e427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baron-Cohen S, Knickmeyer RC, Belmonte MK. Sex differences in the brain: implications for explaining autism. Science. 2005;310:819–23.

    Article  CAS  PubMed  Google Scholar 

  19. Michel M, Schmidt MJ, Mirnics K. Immune system gene dysregulation in autism and schizophrenia. Dev Neurobiol. 2012;72:1277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63. A research article that illustrates the importance of the immune system and the gut-brain axis in neurodevelopmental disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry. 2012;17:402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen D, Pichard N, Tordjman S, Baumann C, Burglen L, Excoffier E, et al. Specific genetic disorders and autism: clinical contribution towards their identification. J Autism Dev Disord. 2005;35:103–16.

    Article  PubMed  Google Scholar 

  23. Huguet G, Ey E, Bourgeron T. The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet. 2013;14:191–213.

    Article  CAS  PubMed  Google Scholar 

  24. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001;27:322–6.

    Article  CAS  PubMed  Google Scholar 

  26. Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001;27:327–31.

    Article  CAS  PubMed  Google Scholar 

  27. Lim S, Naisbitt S, Yoon J, Hwang JI, Suh PG, Sheng M, et al. Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem. 1999;274:29510–8.

    Article  CAS  PubMed  Google Scholar 

  28. Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 2011;21:594–603.

    Article  CAS  PubMed  Google Scholar 

  29. Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci. 2005;25:3560–70.

    Article  CAS  PubMed  Google Scholar 

  30. Boeckers TM, Bockmann J, Kreutz MR, Gundelfinger ED. ProSAP/Shank proteins—a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem. 2002;81:903–10.

    Article  CAS  PubMed  Google Scholar 

  31. Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet. 2010;42:489–91.

    Article  CAS  PubMed  Google Scholar 

  32. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.

  33. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sato D, Lionel AC, Leblond CS, Prasad A, Pinto D, Walker S, et al. SHANK1 deletions in males with autism spectrum disorder. Am J Hum Genet. 2012;90:879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cochoy DM, Kolevzon A, Kajiwara Y, Schoen M, Pascual-Lucas M, Lurie S, et al. Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID. Mol Autism. 2015;6:1–13.

    Article  CAS  Google Scholar 

  36. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 2012;486:256–60.

    CAS  PubMed  Google Scholar 

  39. Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron. 2013;78:8–27.

  40. Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, et al. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci. 2008;28:1697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, et al. Sociability and motor functions in Shank1 mutant mice. Brain Res. 2011;1380:120–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wöhr M, Roullet FI, Hung AY, Sheng M, Crawley JN. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One. 2011;6:e20631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Won H, Lee H-R, Gee HY, Mah W, Kim J-I, Lee J, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486:261–5.

    Article  CAS  PubMed  Google Scholar 

  44. Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320:1224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giacometti E, Luikenhuis S, Beard C, Jaenisch R. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A. 2007;104:1931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Djukic A, Rose SA, Jankowski JJ, Feldman JF. Rett syndrome: recognition of facial expression and its relation to scanning patterns. Pediatr Neurol. 2014;51:650–6.

    Article  PubMed  Google Scholar 

  47. Derecki NC, Quinnies KM, Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav Immun. 2011;25:379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson DR, et al. Reelin gene alleles and susceptibility to autism spectrum disorders. Mol Psychiatry. 2002;7:1012–7.

    Article  CAS  PubMed  Google Scholar 

  49. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, et al. Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A. 1998;95:3221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alcántara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, et al. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci. 1998;18:7779–99.

    PubMed  Google Scholar 

  51. Niu S, Yabut O, D’Arcangelo G. The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci. 2008;28:10339–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N, et al. Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2014;165:192–200.

    Article  CAS  Google Scholar 

  53. Li H, Li Y, Shao J, Li R, Qin Y, Xie C, et al. The association analysis of RELN and GRM8 genes with autistic spectrum disorder in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:194–200.

    Article  CAS  PubMed  Google Scholar 

  54. Michetti C, Romano E, Altabella L, Caruso A, Castelluccio P, Bedse G, et al. Mapping pathological phenotypes in reelin mutant mice. Front Pediatr. 2014;2:95.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Canitano R. New experimental treatments for core social domain in autism spectrum disorders. Front Pediatr. 2014;2:61.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Silverman JL, Pride MC, Hayes JE, Puhger KR, Butler-Struben HM, Baker S, et al. GABAB receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology. 2015;40:2228–39. A preclinical study showing that GABAB agonism can reverse some symptoms of Fragile X Autism Spectrum Disorder in two different mouse models.

    Article  CAS  PubMed  Google Scholar 

  57. Crider A, Pandya CD, Peter D, Ahmed AO, Pillai A. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder. Mol Autism. 2014;5:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sesarini CV, Costa L, Naymark M, Granana N, Cajal AR, Garcia Coto M, et al. Evidence for interaction between markers in GABA(A) receptor subunit genes in an Argentinean autism spectrum disorder population. Autism Res. 2014;7:162–6.

    Article  PubMed  Google Scholar 

  59. Sesarini CV, Costa L, Grañana N, Coto MG, Pallia RC, Argibay PF. Association between GABA(A) receptor subunit polymorphisms and autism spectrum disorder (ASD). Psychiatry Res. 2015;229:580–2.

    Article  CAS  PubMed  Google Scholar 

  60. Han Y, Cao D, Li X, Zhang R, Yu F, Ren Y, et al. Attenuation of γ-aminobutyric acid (GABA) transaminase activity contributes to GABA increase in the cerebral cortex of mice exposed to β-cypermethrin. Hum Exp Toxicol. 2014;3:317–24.

    Article  CAS  Google Scholar 

  61. Macrì S, Biamonte F, Romano E, Marino R, Keller F, Laviola G. Perseverative responding and neuroanatomical alterations in adult heterozygous reeler mice are mitigated by neonatal estrogen administration. Psychoneuroendocrinology. 2010;35:1374–87.

  62. Kulkarni J, Gavrilidis E, Wang W, Worsley R, Fitzgerald PB, Gurvich C, et al. Estradiol for treatment-resistant schizophrenia: a large-scale randomized-controlled trial in women of child-bearing age. Mol Psychiatry. 2015;20:695–702. doi:10.1038/mp.2014.33.

  63. Crider A, Thakkar R, Ahmed AO, Pillai A. Dysregulation of estrogen receptor beta (ERβ), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects. Mol Autism. 2014;5:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D, Ghosh M, Ijaz S, et al. Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron. 2016;89:725–33.

    Article  CAS  PubMed  Google Scholar 

  65. Jack A, Connelly JJ, Morris JP. DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Front Hum Neurosci. 2012;6:280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C, et al. Plasma oxytocin levels in autistic children. Biol Psychiatry. 1998;43:270–7.

    Article  CAS  PubMed  Google Scholar 

  67. Auyeung B, Lombardo MV, Heinrichs M, Chakrabarti B, Sule A, Deakin JB, et al. Oxytocin increases eye contact during a real-time, naturalistic social interaction in males with and without autism. Transl Psychiatry. 2015;5:e507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry. 2015.

  69. Scott N, Prigge M, Yizhar O, Kimchi T. A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature. 2015;525:519–22. doi:10.1038/nature15378.

  70. Bartz JA, Zaki J, Ochsner KN, Bolger N, Kolevzon A, Ludwig N, et al. Effects of oxytocin on recollections of maternal care and closeness. Proc Natl Acad Sci U S A. 2010;107:21371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cushing BS, Carter CS. Prior exposure to oxytocin mimics the effects of social contact and facilitates sexual behaviour in females. J Neuroendocrinol. 1999;11:765–9.

    Article  CAS  PubMed  Google Scholar 

  72. Walum H, Lichtenstein P, Neiderhiser JM, Reiss D, Ganiban JM, Spotts EL, et al. Variation in the oxytocin receptor gene is associated with pair-bonding and social behavior. Biol Psychiatry. 2012;71:419–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wermter AK, Kamp-Becker I, Hesse P, Schulte-Körne G, Strauch K, Remschmidt H. Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:629–39.

    CAS  PubMed  Google Scholar 

  74. Yrigollen CM, Han SS, Kochetkova A, Babitz T, Chang JT, Volkmar FR, et al. Genes controlling affiliative behavior as candidate genes for autism. Biol Psychiatry. 2008;63:911–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu S, Jia M, Ruan Y, Liu J, Guo Y, Shuang M, et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry. 2005;58:74–7.

    Article  CAS  PubMed  Google Scholar 

  76. Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott JA, et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci U S A. 2013;110:20953–8. A highly translational study detailing the impact of oxytocin administration on brain activity in relation to relevant and nonrelevant social stimuli. This study provides more information on the use of oxytocin to treat Autism Spectrum Disorder and other disorders involving social deficits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Watanabe T, Abe O, Kuwabara H, Yahata N, Takano Y, Iwashiro N, et al. Mitigation of sociocommunicational deficits of autism through oxytocin-induced recovery of medial prefrontal activity: a randomized trial. JAMA Psychiatry. 2014;71:166–75. doi:10.1001/jamapsychiatry.2013.3181.

  78. Gondalia SV, Palombo EA, Knowles SR, Cox SB, Meyer D, Austin DW. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 2012;5:419–27.

    Article  PubMed  Google Scholar 

  79. Pang KH, Croaker GD. Constipation in children with autism and autistic spectrum disorder. Pediatr Surg Int. 2011;27:353–8.

    Article  PubMed  Google Scholar 

  80. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry. 2013;70:49–58.

    Article  PubMed  Google Scholar 

  81. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6. A thorough preclinical study on the contribution of microglial abnormalities to the development of social behavior deficits.

    Article  CAS  PubMed  Google Scholar 

  82. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun. 2014;5:5748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reisinger S, Khan D, Kong E, Berger A, Pollak A, Pollak DD. The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther. 2015;149:213–26.

    Article  CAS  PubMed  Google Scholar 

  84. Majidi-Zolbanin J, Doosti MH, Kosari-Nasab M, Salari AA. Prenatal maternal immune activation increases anxiety- and depressive-like behaviors in offspring with experimental autoimmune encephalomyelitis. Neuroscience. 2015;294:69–81.

    Article  CAS  PubMed  Google Scholar 

  85. Koyama R, Ikegaya Y. Microglia in the pathogenesis of autism spectrum disorders. Neurosci Res. 2015;100:1–5.

    Article  CAS  PubMed  Google Scholar 

  86. Nevell L, Zhang K, Aiello AE, Koenen K, Galea S, Soliven R, et al. Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study. Psychoneuroendocrinology. 2014;43:62–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I, et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet. 2003;35:171–5.

    Article  CAS  PubMed  Google Scholar 

  88. Sakurai K, Nishiguchi N, Shirakawa O, Nushida H, Ueno Y, Maeda K, et al. Lack of association between endoplasmic reticulum stress response genes and suicidal victims. Kobe J Med Sci. 2007;53:151–5.

    CAS  PubMed  Google Scholar 

  89. Dong H, Huang H, Yun X, Kim DS, Yue Y, Wu H, et al. Bilirubin increases insulin sensitivity in leptin-receptor deficient and diet-induced obese mice through suppression of ER stress and chronic inflammation. Endocrinology. 2014;155:818–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li L, Hu GK. Pink1 protects cortical neurons from thapsigargin-induced oxidative stress and neuronal apoptosis. Biosci Rep. 2015;35:e00174. doi:10.1042/BSR20140104.

  91. Jia Y, Jucius TJ, Cook SA, Ackerman SL. Loss of Clcc1 results in ER stress, misfolded protein accumulation, and neurodegeneration. J Neurosci. 2015;35:3001–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fujita E, Dai H, Tanabe Y, Zhiling Y, Yamagata T, Miyakawa T, et al. Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis. 2010;1:e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Momoi T, Fujita E, Senoo H, Momoi M. Genetic factors and epigenetic factors for autism: endoplasmic reticulum stress and impaired synaptic function. Cell Biol Int. 2009;34:13–9.

    PubMed  Google Scholar 

  94. Cook Jr EH, Scherer SW. Copy-number variations associated with neuropsychiatric conditions. Nature. 2008;455:919–23.

    Article  CAS  PubMed  Google Scholar 

  95. Patel N, Crider A, Pandya CD, Ahmed AO, Pillai A. Altered mRNA Levels of Glucocorticoid Receptor, Mineralocorticoid Receptor, and Co-Chaperones (FKBP5 and PTGES3) in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects. Mol. Neurobiol. 2015. doi:10.1007/s12035-015-9178-2.

  96. Gejman PV, Sanders AR, Kendler KS. Genetics of schizophrenia: new findings and challenges. Annu Rev Genomics Hum Genet. 2011;12:121–44.

    Article  CAS  PubMed  Google Scholar 

  97. Moreno-De-Luca D, SGENE Consortium, Mulle JG, Simons Simplex Collection Genetics Consortium, Kaminsky EB, Sanders SJ, et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet. 2010;87:618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron. 2011;70:863–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D, Brustein E, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A. 2010;107:7863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron. 2016;89:147–62. An important study showing that two similar mutations in the same gene can result in different phenotypes.

    Article  CAS  PubMed  Google Scholar 

  101. Tantra M, Hammer C, Kästner A, Dahm L, Begemann M, Bodda C, et al. Mild expression differences of MECP2 influencing aggressive social behavior. EMBO Mol. Med. 2014;6:662–84.

  102. McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry. 2014;19:652–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shibayama A, Cook Jr EH, Feng J, Glanzmann C, Yan J, Craddock N, et al. MECP2 structural and 3′-UTR variants in schizophrenia, autism and other psychiatric diseases: a possible association with autism. Am J Med Genet B Neuropsychiatr Genet. 2004;128B:50–3.

    Article  PubMed  Google Scholar 

  104. Kim M, Jeong Y, Chang YC. Extracellular matrix protein reelin regulate dendritic spine density through CaMKIIβ. Neurosci Lett. 2015;599:97–101.

    Article  CAS  PubMed  Google Scholar 

  105. Li M, Luo XJ, Xiao X, Shi L, Liu XY, Yin LD, et al. Analysis of common genetic variants identifies RELN as a risk gene for schizophrenia in Chinese population. World J Biol Psychiatry. 2013;14:91–9.

    Article  PubMed  Google Scholar 

  106. Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134B:60–6.

    Article  PubMed  Google Scholar 

  107. Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res. 2005;72:109–22.

    Article  PubMed  Google Scholar 

  108. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57:1061–9.

    Article  CAS  PubMed  Google Scholar 

  109. Habl G, Schmitt A, Zink M, von Wilmsdorff M, Yeganeh-Doost P, Jatzko A, et al. Decreased reelin expression in the left prefrontal cortex (BA9) in chronic schizophrenia patients. Neuropsychobiology. 2012;66:57–62.

    Article  CAS  PubMed  Google Scholar 

  110. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A. 1998;95:15718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schroeder A, Buret L, Hill RA, van den Buuse M. Gene-environment interaction of reelin and stress in cognitive behaviours in mice: implications for schizophrenia. Behav Brain Res. 2015;287:304–14.

    Article  CAS  PubMed  Google Scholar 

  112. Tremolizzo L, Doueiri MS, Dong E, Grayson DR, Davis J, Pinna G, et al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry. 2005;57(5):500–9.

    Article  CAS  PubMed  Google Scholar 

  113. Hellwig S, Hack I, Kowalski J, Brunne B, Jarowyj J, Unger A, et al. Role for Reelin in neurotransmitter release. J Neurosci. 2011;31:2352–60.

    Article  CAS  PubMed  Google Scholar 

  114. Ventruti A, Kazdoba TM, Niu S, D’Arcangelo G. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain. Neuroscience. 2011;189:32–42.

    Article  CAS  PubMed  Google Scholar 

  115. Han S, Tai C, Jones CJ, Scheuer T, Catterall WA. Enhancement of inhibitory neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron. 2014;81:1282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rowland LM, Summerfelt A, Wijtenburg SA, Du X, Chiappelli JJ, Krishna N, et al. Frontal Glutamate and γ-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia. JAMA Psychiatry. 2016;73:166–74. doi:10.1001/jamapsychiatry.2015.2680.

  117. Hines RM, Hines DJ, Houston CM, Mukherjee J, Haydon PG, Tretter V, et al. Disrupting the clustering of GABAA receptor α2 subunits in the frontal cortex leads to reduced γ-power and cognitive deficits. Proc Natl Acad Sci U S A. 2013;110:16628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hoftman GD, Volk DW, Bazmi HH, Li S, Sampson AR, Lewis DA. Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance. Schizophr Bull. 2015;41:180–91.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cochran DM, Fallon D, Hill M, Frazier JA. The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv Rev Psychiatry. 2013;21:219–47. A thorough review of oxytocin in psychiatric disorders including Autism Spectrum Disorder and Schizophrenia. This review includes animal and human data.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jobst A, Dehning S, Ruf S, Notz T, Buchheim A, Henning-Fast K, et al. Oxytocin and vasopressin levels are decreased in the plasma of male schizophrenia patients. Acta Neuropsychiatr. 2014;26:347–55.

    Article  PubMed  Google Scholar 

  121. Macdonald K, Feifel D. Oxytocin in schizophrenia: a review of evidence for its therapeutic effects. Acta Neuropsychiatr. 2012;24:130–46.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Strauss GP, Keller WR, Koenig JI, Gold JM, Frost KH, Buchanan RW. Plasma oxytocin levels predict social cue recognition in individuals with schizophrenia. Schizophr Res. 2015;162:47–51.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Strauss GP, Keller WR, Koenig JI, Sullivan SK, Gold JM, Buchanan RW. Endogenous oxytocin levels are associated with the perception of emotion in dynamic body expressions in schizophrenia. Schizophr Res. 2015;162:52–6.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gibson CM, Penn DL, Smedley KL, Leserman J, Elliott T, Pedersen CA. A pilot six-week randomized controlled trial of oxytocin on social cognition and social skills in schizophrenia. Schizophr Res. 2014;156:261–5.

    Article  PubMed  Google Scholar 

  125. Woolley JD, Chuang B, Lam O, Lai W, O’Donovan A, Rankin KP, et al. Oxytocin administration enhances controlled social cognition in patients with schizophrenia. Psychoneuroendocrinology. 2014;47:116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Goldman M, Marlow-O’Connor M, Torres I, Carter CS. Diminished plasma oxytocin in schizophrenic patients with neuroendocrine dysfunction and emotional deficits. Schizophr Res. 2008;98:247–55.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Glovinsky D, Kalogeras KT, Kirch DG, Suddath R, Wyatt RJ. Cerebrospinal fluid oxytocin concentration in schizophrenic patients does not differ from control subjects and is not changed by neuroleptic medication. Schizophr Res. 1994;11:273–6.

    Article  CAS  PubMed  Google Scholar 

  128. Sasayama D, Hattori K, Teraishi T, Hori H, Ota M, Yoshida S, et al. Negative correlation between cerebrospinal fluid oxytocin levels and negative symptoms of male patients with schizophrenia. Schizophr Res. 2012;139:201–6.

    Article  PubMed  Google Scholar 

  129. Beckmann H, Lang RE, Gattaz WF. Vasopressin--oxytocin in cerebrospinal fluid of schizophrenic patients and normal controls. Psychoneuroendocrinology. 1985;10:187–91.

    Article  CAS  PubMed  Google Scholar 

  130. Souza RP, Ismail P, Meltzer HY, Kennedy JL. Variants in the oxytocin gene and risk for schizophrenia. Schizophr Res. 2010;121:279–80.

    Article  PubMed  Google Scholar 

  131. Montag C, Brockmann EM, Bayerl M, Rujescu D, Müller DJ, Gallinat J. Oxytocin and oxytocin receptor gene polymorphisms and risk for schizophrenia: a case-control study. World J Biol Psychiatry. 2013;14:500–8.

    Article  PubMed  Google Scholar 

  132. Watanabe Y, Kaneko N, Nunokawa A, Shibuya M, Egawa J, Someya T. Oxytocin receptor (OXTR) gene and risk of schizophrenia: case-control and family-based analyses and meta-analysis in a Japanese population. Psychiatry Clin Neurosci. 2012;66:622.

    Article  PubMed  Google Scholar 

  133. Schmidt-Kastner R, van Os J, Esquivel G, Steinbusch HW, Rutten BP. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Mol Psychiatry. 2012;17:1194–205.

    Article  CAS  PubMed  Google Scholar 

  134. Howell KR, Pillai A. Long-Term Effects of Prenatal Hypoxia on Schizophrenia-Like Phenotype in Heterozygous Reeler Mice. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9265-4.

  135. Suvisaari JM, Taxell-Lassas V, Pankakoski M, Haukka JK, Lönnqvist JK, Häkkinen LT. Obstetric complications as risk factors for schizophrenia spectrum psychoses in offspring of mothers with psychotic disorder. Schizophr Bull. 2013;39:1056–66.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pedersen MG, Stevens H, Pedersen CB, Nørgaard-Pedersen B, Mortensen PB. Toxoplasma infection and later development of schizophrenia in mothers. Am J Psychiatry. 2011;168:814–21.

    Article  PubMed  Google Scholar 

  137. Cheslack-Postava K, Brown AS, Chudal R, Suominen A, Huttunen J, Surcel HM, et al. Maternal exposure to sexually transmitted infections and schizophrenia among offspring. Schizophr Res. 2015;166:255–60.

    Article  PubMed  Google Scholar 

  138. Blomström Å, Karlsson H, Gardner R, Jörgensen L, Magnusson C, Dalman C. Associations between maternal infection during pregnancy, childhood infections, and the risk of subsequent psychotic disorder—a Swedish Cohort Study of nearly 2 million individuals. Schizophr Bull. 2016;42:125–33.

    PubMed  Google Scholar 

  139. Holloway T, Moreno JL, Umali A, Rayannavar V, Hodes GE, Russo SJ, et al. Prenatal stress induces schizophrenia-like alterations of serotonin 2A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci. 2013;33:1088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bayer TA, Falkai P, Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res. 1999;33:543–8.

    Article  CAS  PubMed  Google Scholar 

  141. Maynard TM, Sikich L, Lieberman JA, LaMantia AS. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull. 2001;27:457–76.

    Article  CAS  PubMed  Google Scholar 

  142. Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev. 2014;38:72–93.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Miles JH. Autism spectrum disorders—a genetics review. Genet Med. 2011;13:278–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anilkumar Pillai.

Ethics declarations

Conflict of Interest

Dr. Amanda Crider and Dr. Anilkumar Pillai declare that they have no conflict of interest.

This work was supported by the National Institute of Health (R01MH097060) to AP.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Psychosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crider, A., Pillai, A. The Neurobiological Basis for Social Affiliation in Autism Spectrum Disorder and Schizophrenia. Curr Behav Neurosci Rep 3, 154–164 (2016). https://doi.org/10.1007/s40473-016-0079-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-016-0079-0

Keywords

Navigation