Skip to main content
Log in

Secondary Hyperparathyroidism and Cognitive Decline

  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

A Correction to this article was published on 31 March 2023

This article has been updated

Abstract

Purpose of Review

Secondary hyperparathyroidism (SHPT) likely contributes to the high prevalence of cognitive decline found among individuals with end-stage kidney disease (ESKD). Our objective is to critically evaluate the recent literature regarding the association between SHPT and cognitive decline and identify potential mechanisms.

Recent Findings

Nine studies assessing the relationship between SHPT and cognition have been published in the last two decades, each showing that elevated parathyroid hormone (PTH) levels were associated with cognitive decline. One also found structural changes within the brain related to SHPT. Additionally, two found that SHPT treatment decreases the risk of cognitive decline in ESKD patients.

Summary

SHPT is associated with cognitive impairment. However, the severity of SHPT associated with these changes and the specific cognitive domains affected remain unclear. Future studies are needed to focus on specific cognitive domains, the trajectory of cognitive decline, and optimal treatment strategies including the impact of kidney transplant and tertiary hyperparathyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fraser WD. Hyperparathyroidism. Lancet. 2009;374(9684):145–58.

    Article  CAS  PubMed  Google Scholar 

  2. Andress DL, Coyne DW, Kalantar-Zadeh K, Molitch ME, Zangeneh F, Sprague SM. Management of secondary hyperparathyroidism in stages 3 and 4 chronic kidney disease. Endocr Pract. 2008;14(1):18–27.

    Article  PubMed  Google Scholar 

  3. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  4. Fuller DS, Dluzniewski PJ, Cooper K, Bradbury BD, Robinson BM, Tentori F. Combinations of mineral and bone disorder markers and risk of death and hospitalizations in the international dialysis outcomes and practice patterns study. Clin Kidney J. 2020;13(6):1056–62.

    Article  CAS  PubMed  Google Scholar 

  5. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15(8):2208–18.

    Article  CAS  PubMed  Google Scholar 

  6. Tentori F, Blayney MJ, Albert JM, Gillespie BW, Kerr PG, Bommer J, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2008;52(3):519–30.

    Article  CAS  PubMed  Google Scholar 

  7. Tentori F, Wang M, Bieber BA, Karaboyas A, Li Y, Jacobson SH, et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol. 2015;10(1):98–109.

    Article  CAS  PubMed  Google Scholar 

  8. KDIGO. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1-130.

    Google Scholar 

  9. Dream S, Kuo LE, Kuo JH, Sprague SM, Nwariaku FE, Wolf M, et al. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Secondary and Tertiary Renal Hyperparathyroidism. Ann Surg. 2022;276(3):e141–76.

    Article  PubMed  Google Scholar 

  10. Lourida I, Thompson-Coon J, Dickens CM, Soni M, Kuźma E, Kos K, et al. Parathyroid hormone, cognitive function and dementia: a systematic review. PLoS One. 2015;10(5): e0127574.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang W, Hu CY, Li FL, Hua XG, Huang K, Zhang XJ. Elevated parathyroid hormone levels and cognitive function: a systematic review. Arch Gerontol Geriatr. 2020;87: 103985.

    Article  CAS  PubMed  Google Scholar 

  12. Chandran M, Yeh LTL, de Jong MC, Bilezikian JP, Parameswaran R. Cognitive deficits in primary hyperparathyroidism - what we know and what we do not know: a narrative review. Rev Endocr Metab Disord. 2022;23(5):1079–87.

    Article  CAS  PubMed  Google Scholar 

  13. Liu M, Sum M, Cong E, Colon I, Bucovsky M, Williams J, et al. Cognition and cerebrovascular function in primary hyperparathyroidism before and after parathyroidectomy. J Endocrinol Invest. 2020;43(3):369–79.

    Article  CAS  PubMed  Google Scholar 

  14. Walker MD, McMahon DJ, Inabnet WB, Lazar RM, Brown I, Vardy S, et al. Neuropsychological features in primary hyperparathyroidism: a prospective study. J Clin Endocrinol Metab. 2009;94(6):1951–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roman SA, Sosa JA, Pietrzak RH, Snyder PJ, Thomas DC, Udelsman R, et al. The effects of serum calcium and parathyroid hormone changes on psychological and cognitive function in patients undergoing parathyroidectomy for primary hyperparathyroidism. Ann Surg. 2011;253(1):131–7.

    Article  PubMed  Google Scholar 

  16. Dotzenrath CM, Kaetsch AK, Pfingsten H, Cupisti K, Weyerbrock N, Vossough A, et al. Neuropsychiatric and cognitive changes after surgery for primary hyperparathyroidism. World J Surg. 2006;30(5):680–5.

    Article  PubMed  Google Scholar 

  17. McAdams-DeMarco MA, Daubresse M, Bae S, Gross AL, Carlson MC, Segev DL. Dementia, Alzheimer’s disease, and mortality after hemodialysis initiation. Clin J Am Soc Nephrol. 2018;13(9):1339–47.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kurella Tamura M, Yaffe K. Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies. Kidney Int. 2011;79(1):14–22.

    Article  PubMed  Google Scholar 

  19. Murray AM. Cognitive impairment in the aging dialysis and chronic kidney disease populations: an occult burden. Adv Chronic Kidney Dis. 2008;15(2):123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vanderlinden JA, Ross-White A, Holden R, Shamseddin MK, Day A, Boyd JG. Quantifying cognitive dysfunction across the spectrum of end-stage kidney disease: a systematic review and meta-analysis. Nephrology (Carlton). 2019;24(1):5–16.

    Article  PubMed  Google Scholar 

  21. Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA. Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J Am Soc Nephrol. 2013;24(3):353–63.

    Article  CAS  PubMed  Google Scholar 

  22. Drew DA, Weiner DE, Sarnak MJ. Cognitive impairment in CKD: pathophysiology, management, and prevention. Am J Kidney Dis. 2019;74(6):782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harhay MN, Xie D, Zhang X, Hsu CY, Vittinghoff E, Go AS, et al. cognitive impairment in non-dialysis-dependent CKD and the transition to dialysis: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis. 2018;72(4):499–508.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kurella Tamura M, Yaffe K, Hsu CY, Yang J, Sozio S, Fischer M, et al. Cognitive impairment and progression of CKD. Am J Kidney Dis. 2016;68(1):77–83.

    Article  PubMed  Google Scholar 

  25. Yaffe K, Ackerson L, Kurella Tamura M, Le Blanc P, Kusek JW, Sehgal AR, et al. Chronic kidney disease and cognitive function in older adults: findings from the chronic renal insufficiency cohort cognitive study. J Am Geriatr Soc. 2010;58(2):338–45.

    Article  PubMed  PubMed Central  Google Scholar 

  26. König M, Gollasch M, Spira D, Buchmann N, Hopfenmüller W, Steinhagen-Thiessen E, et al. Mild-to-moderate chronic kidney disease and geriatric outcomes: analysis of cross-sectional data from the Berlin Aging Study II. Gerontology. 2018;64(2):118–26.

    Article  PubMed  Google Scholar 

  27. Berger I, Wu S, Masson P, Kelly PJ, Duthie FA, Whiteley W, et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 2016;14(1):206.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hailpern SM, Melamed ML, Cohen HW, Hostetter TH. Moderate chronic kidney disease and cognitive function in adults 20 to 59 years of age: Third National Health and Nutrition Examination Survey (NHANES III). J Am Soc Nephrol. 2007;18(7):2205–13.

    Article  PubMed  Google Scholar 

  29. Chu NM, Chen X, Gross AL, Carlson MC, Garonzik-Wang JM, Norman SP, et al. Cognitive impairment burden in older and younger adults across the kidney transplant care continuum. Clin Transplant. 2021;35(10): e14425.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lai S, Mecarelli O, Pulitano P, Romanello R, Davi L, Zarabla A, et al. Neurological, psychological, and cognitive disorders in patients with chronic kidney disease on conservative and replacement therapy. Medicine (Baltimore). 2016;95(48): e5191.

    Article  CAS  PubMed  Google Scholar 

  31. Harvey PD. Domains of cognition and their assessment. Dialogues Clin Neurosci. 2019;21(3):227–37.

    Article  PubMed  PubMed Central  Google Scholar 

  32. MacEwen C, Sutherland S, Daly J, Pugh C, Tarassenko L. Relationship between hypotension and cerebral ischemia during hemodialysis. J Am Soc Nephrol. 2017;28(8):2511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Leinau L, Murphy TE, Bradley E, Fried T. Relationship between conditions addressed by hemodialysis guidelines and non-ESRD-specific conditions affecting quality of life. Clin J Am Soc Nephrol. 2009;4(3):572–8. (This study assessed the incidence of cognitive decline among individuals with end-stage renal disease, and found that patients with parathyroid hormone (PTH) levels between 150 and 300 pg/dL performed significantly better in tests of cognition than those who had PTH levels that were higher or lower than of this range)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. • Kalaitzidis RG, Karasavvidou D, Tatsioni A, Balafa O, Pappas K, Spanos G, et al. Risk factors for cognitive dysfunction in CKD and hypertensive subjects. Int Urol Nephrol. 2013;45(6):1637–46. (This was a cross-sectional study of patients with both CKD and ESKD. After adjusting for CKD stage, age, presence of diabetes, and diastolic blood pressure, the authors found that elevated PTH levels were associated with worse global cognitive function but not worse executive function.)

    Article  PubMed  Google Scholar 

  35. • Puy L, Bugnicourt JM, Liabeuf S, Desjardins L, Roussel M, Diouf M, et al. Cognitive impairments and dysexecutive behavioral disorders in chronic kidney disease. J Neuropsychiatry Clin Neurosci. 2018;30(4):310–7. (This study assessed cognition in patients with chronic kidney disease and found that cognitive impairment was independently associated with high parathyroid hormone levels.)

    Article  PubMed  Google Scholar 

  36. •• Gong X, Zou L, Wu H, Shan Y, Liu G, Zheng S, et al. Altered brain structural and cognitive impairment in end-stage renal disease patients with secondary hyperparathyroidism. Acta Radiol. 2020;61(6):796–803. (This study evaluated brain volume changes and cognition in end-stage kidney disease (ESKD) patients with secondary hyperparathyroidism (SHPT). The authors found that those with SHPT had significantly increased gray matter volume compared to those without SHPT; these changes corresponded with worse performance on cognitive testing.)

    Article  PubMed  Google Scholar 

  37. • Jorde R, Waterloo K, Saleh F, Haug E, Svartberg J. Neuropsychological function in relation to serum parathyroid hormone and serum 25-hydroxyvitamin D levels. The Tromsø study J Neurol. 2006;253(4):464–70. (This was a case-control study comparing individuals with secondary hyperparathyroidism (SHPT) to a group of age-matched and sex-matched controls without SHPT. After adjusting for multiple covariates, the authors found that those with SHPT scored significantly worse on one out of six tests of executive function and one out of six tests of memory.)

    Article  CAS  PubMed  Google Scholar 

  38. Usdin TB, Gruber C, Bonner TI. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem. 1995;270(26):15455–8.

    Article  CAS  PubMed  Google Scholar 

  39. Harvey S, Fraser RA. Parathyroid hormone: neural and neuroendocrine perspectives. J Endocrinol. 1993;139(3):353–61.

    Article  CAS  PubMed  Google Scholar 

  40. Rroji M, Figurek A, Viggiano D, Capasso G, Spasovski G. Phosphate in the context of cognitive impairment and other neurological disorders occurrence in chronic kidney disease. Int J Mol Sci. 2022;23(13):7362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hagström E, Kilander L, Nylander R, Larsson EM, Michaëlsson K, Melhus H, et al. Plasma parathyroid hormone is associated with vascular dementia and cerebral hyperintensities in two community-based cohorts. J Clin Endocrinol Metab. 2014;99(11):4181–9.

    Article  PubMed  Google Scholar 

  42. Smogorzewski MJ, Massry SG. Altered acetylcholine metabolism of brain in uremia: role of secondary hyperparathyroidism. J Ren Nutr. 2008;18(1):122–6.

    Article  PubMed  Google Scholar 

  43. •• Chou FF, Chen JB, Hsieh KC, Liou CW. Cognitive changes after parathyroidectomy in patients with secondary hyperparathyroidism. Surgery. 2008;143(4):526–32. (This study evaluated changes in cognition following parathyroidectomy. The authors found that patients who underwent parathyroidectomy for secondary hyperparathyroidism (SHPT) had significantly improved performance on cognitive testing 16 weeks following parathyroidectomy compared to those who did not undergo parathyroidectomy.)

    Article  PubMed  Google Scholar 

  44. •• Mathur A, Ahn JB, Sutton W, Chu NM, Gross AL, Segev DL, et al. Secondary hyperparathyroidism (CKD-MBD) treatment and the risk of dementia. Nephrol Dial Transplant. 2022;37(11):2111–8. (This study assessed the risk of developing dementia among older adults following dialysis initiation. The authors found that treatment of secondary hyperparathyroidism, including both medical therapies and parathyroidectomy, was associated with a significantly decreased risk of developing dementia compared to those who did not undergo treatment.)

    Article  PubMed  Google Scholar 

  45. Chu NM, Shi Z, Haugen CE, Norman SP, Gross AL, Brennan DC, et al. Cognitive function, access to kidney transplantation, and waitlist mortality among kidney transplant candidates with or without diabetes. Am J Kidney Dis. 2020;76(1):72–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Warsame F, Haugen CE, Ying H, Garonzik-Wang JM, Desai NM, Hall RK, et al. Limited health literacy and adverse outcomes among kidney transplant candidates. Am J Transplant. 2019;19(2):457–65.

    Article  PubMed  Google Scholar 

  47. Jindal RM, Joseph JT, Morris MC, Santella RN, Baines LS. Noncompliance after kidney transplantation: a systematic review. Transplant Proc. 2003;35(8):2868–72.

    Article  CAS  PubMed  Google Scholar 

  48. Hucker A, Bunn F, Carpenter L, Lawrence C, Farrington K, Sharma S. Non-adherence to immunosuppressants following renal transplantation: a protocol for a systematic review. BMJ Open. 2017;7(9): e015411.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thomas AG, Ruck JM, Shaffer AA, Haugen CE, Ying H, Warsame F, et al. Kidney transplant outcomes in recipients with cognitive impairment: a national registry and prospective cohort study. Transplantation. 2019;103(7):1504–13.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kramer L, Madl C, Stockenhuber F, Yeganehfar W, Eisenhuber E, Derfler K, et al. Beneficial effect of renal transplantation on cognitive brain function. Kidney Int. 1996;49(3):833–8.

    Article  CAS  PubMed  Google Scholar 

  51. Radić J, Ljutić D, Radić M, Kovačić V, Dodig-Ćurković K, Šain M. Kidney transplantation improves cognitive and psychomotor functions in adult hemodialysis patients. Am J Nephrol. 2011;34(5):399–406.

    Article  PubMed  Google Scholar 

  52. Harciarek M, Biedunkiewicz B, Lichodziejewska-Niemierko M, Dębska-Ślizień A, Rutkowski B. Continuous cognitive improvement 1 year following successful kidney transplant. Kidney Int. 2011;79(12):1353–60.

    Article  PubMed  Google Scholar 

  53. Griva K, Thompson D, Jayasena D, Davenport A, Harrison M, Newman SP. Cognitive functioning pre- to post-kidney transplantation–a prospective study. Nephrol Dial Transplant. 2006;21(11):3275–82.

    Article  PubMed  Google Scholar 

  54. Chu NM, Gross AL, Shaffer AA, Haugen CE, Norman SP, Xue QL, et al. Frailty and changes in cognitive function after kidney transplantation. J Am Soc Nephrol. 2019;30(2):336–45.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chu NM, Bae S, Chen X, Ruck J, Gross AL, Albert M, et al. Delirium, changes in cognitive function, and risk of diagnosed dementia after kidney transplantation. Am J Transplant. 2022;22(12):2892–902.

    Article  CAS  PubMed  Google Scholar 

  56. Troen AM, Scott TM, D’Anci KE, Moorthy D, Dobson B, Rogers G, et al. Cognitive dysfunction and depression in adult kidney transplant recipients: baseline findings from the FAVORIT Ancillary Cognitive Trial (FACT). J Ren Nutr. 2012;22(2):268-76.e3.

    Article  PubMed  Google Scholar 

  57. Gelb S, Shapiro RJ, Hill A, Thornton WL. Cognitive outcome following kidney transplantation. Nephrol Dial Transplant. 2008;23(3):1032–8.

    Article  PubMed  Google Scholar 

  58. Joshee P, Wood AG, Wood ER, Grunfeld EA. Meta-analysis of cognitive functioning in patients following kidney transplantation. Nephrol Dial Transplant. 2018;33(7):1268–77.

    Article  CAS  PubMed  Google Scholar 

  59. Crepeau P, Chen X, Udyavar R, Morris-Wiseman LF, Segev DL, McAdams-DeMarco M, et al. Hyperparathyroidism at 1 year after kidney transplantation is associated with graft loss. Surgery. 2023;173(1):138–45.

    Article  PubMed  Google Scholar 

  60. Araujo M, Ramalho JAM, Elias RM, Jorgetti V, Nahas W, Custodio M, et al. Persistent hyperparathyroidism as a risk factor for long-term graft failure: the need to discuss indication for parathyroidectomy. Surgery. 2018;163(5):1144–50.

    Article  PubMed  Google Scholar 

  61. Evenepoel P, Claes K, Kuypers D, Maes B, Bammens B, Vanrenterghem Y. Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant. 2004;19(5):1281–7.

    Article  CAS  PubMed  Google Scholar 

  62. Garvin PJ, Castaneda M, Linderer R, Dickhans M. Management of hypercalcemic hyperparathyroidism after renal transplantation. Arch Surg. 1985;120(5):578–83.

    Article  CAS  PubMed  Google Scholar 

  63. Sutton W, Chen X, Patel P, Karzai S, Prescott JD, Segev DL, et al. Prevalence and risk factors for tertiary hyperparathyroidism in kidney transplant recipients. Surgery. 2021;171(1):69–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Crepeau.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crepeau, P., Fedorova, T., Morris-Wiseman, L.F. et al. Secondary Hyperparathyroidism and Cognitive Decline. Curr Transpl Rep 10, 60–68 (2023). https://doi.org/10.1007/s40472-023-00394-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-023-00394-5

Keywords

Navigation