Skip to main content

Advertisement

Log in

Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology

  • Expanding role of technology in organ transplant (D Axelrod and J Scalea, Section Editors)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will highlight how gene editing technology using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) has revolutionized the xenotransplantation field, leading to the first pig-to-human kidney and heart xenotransplants.

Recent Findings

CRISPR/Cas9 gene editing technology has significantly accelerated the development of multi-gene modified pigs to address the major immunological and physiological incompatibilities between pigs and humans. These gene edits include the knockout (KO) of the three porcine-specific glycan epitopes responsible for hyperacute rejection and human transgene expression targeting the coagulation and complement pathways. CRISPR/Cas9 genetic editing has also addressed a critical concern for the potential for cross-species transmission of porcine endogenous retroviruses (PERVs) by allowing the successful generation of pigs with genomically inactivated PERVs to eliminate the risk of viral transmission.

Summary

CRISPR/Cas9 multi-gene edited pigs are likely to be used in the first human clinical xenotransplant trials. While genetic modifications will help protect pig xenografts from innate immune responses, genetic engineering alone will not be sufficient to prevent chronic rejection, given the overwhelming number of possible xenoantigens that can trigger adaptive immune responses and antibody-mediated rejection. Additional immunomodulatory strategies, such as targeted immunosuppression or tolerance induction, will be required for long-term survival of porcine xenografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

10-GE:

10 Gene edited pig

β4GalNT2 :

Gene encoding β-1,4-N-acetyl-galactosaminyltransferase 2

Cas:

CRISPR-associated protein

CMAH :

Gene encoding cytidine monophosphate-N-acetylneuraminic acid hydroxylase

CRISPR:

Clustered regularly interspaced short palindromic repeats

DAF:

Decay-accelerating factor

DSB:

Double-stranded DNA break

ECMO:

Extracorporeal membrane oxygenation

EPCR:

Endothelial cell protein C receptor

GAL:

Galactose-α-1,3-galactose glycan

GGTA1 :

Gene encoding α-1,3-galactosyltransferase

GHR:

Growth hormone receptor

HDR:

Homology-directed repair

HO1:

Hemoxygenase-1

KO:

Knockout

Neu5Gc:

N-glycolylneuraminic acid glycan

NHEJ:

Nonhomologous end-joining

NHP:

Non-human primate

NYU:

New York University

PAM:

Protospacer adjacent motif

PERV:

Porcine endogenous retrovirus

POD:

Post-operative day

RVD:

Repeat-variable di-residue

SDa:

Xenoantigen produced by β-1,4-N-acetyl-galactosaminyltransferase 2

sgRNA:

Single guide RNA

TALEN:

Transcription activator-like effector nuclease

TBM:

Thrombomodulin

UAB:

University of Alabama

UMMC:

University of Maryland Medical Center

ZFN:

Zinc finger nuclease

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Israni AK. OPTN/SRTR 2020 annual data report: introduction. Am J Transplant. 2022;22(Suppl 2):11–20. https://doi.org/10.1111/ajt.16974.

    Article  PubMed  Google Scholar 

  2. Klymiuk N, Aigner B, Brem G, Wolf E. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 2010. https://doi.org/10.1002/mrd.21127.

    Article  PubMed  Google Scholar 

  3. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem. 1988. https://www.ncbi.nlm.nih.gov/pubmed/2460463. Accessed 21 July 2022.

  4. Salama A, Evanno G, Harb J, Soulillou JP. Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation. 2015. https://doi.org/10.1111/xen.12142.

    Article  PubMed  Google Scholar 

  5. Byrne G, Ahmad-Villiers S, Du Z, McGregor C. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen. Xenotransplantation. 2018. https://doi.org/10.1111/xen.12394.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sykes M, Sachs DH. Transplanting organs from pigs to humans. Sci Immunol. 2019. https://www.science.org/doi/10.1126/sciimmunol.aau6298. Accessed 21 July 2022.

  7. Montgomery RA, Stern JM, Lonze BE, Tatapudi VS, Mangiola M, Wu M, et al. Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med. 2022. https://www.nejm.org/doi/full/10.1056/NEJMoa2120238. Accessed 21 July 2022.

  8. Porrett PM, Orandi BJ, Kumar V, Houp J, Anderson D, Cozette Killian A, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant. 2022. https://doi.org/10.1111/ajt.16930.

    Article  PubMed  Google Scholar 

  9. Griffith BP, Goerlich CE, Singh AK, Rothblatt M, Lau CL, Shah A, et al. Genetically modified porcine-to-human cardiac xenotransplantation. N Engl J Med. 2022. https://www.nejm.org/doi/10.1056/NEJMoa2201422. Accessed 21 July 2022.

  10. Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 2014. https://doi.org/10.1172/JCI72992.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci. 1996. https://doi.org/10.1073/pnas.93.3.1156.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science. 2003. https://doi.org/10.1126/science.1079512.

    Article  PubMed  Google Scholar 

  13. Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003. https://doi.org/10.1126/science.1078395.

    Article  PubMed  Google Scholar 

  14. Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 2010. https://doi.org/10.1093/nar/gkq512.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. 2008. https://doi.org/10.1038/nmeth0508-374.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009. https://doi.org/10.1126/science.1178811.

    Article  PubMed  Google Scholar 

  17. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009. https://doi.org/10.1126/science.1178817.

    Article  PubMed  Google Scholar 

  18. Valton J, Dupuy A, Daboussi F, Thomas S, Marechal A, Macmaster R, et al. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem. 2012. https://doi.org/10.1074/jbc.C112.408864.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen L, Tang L, Xiang H, Jin L, Li Q, Dong Y, et al. Advances in genome editing technology and its promising application in evolutionary and ecological studies. Gigascience. 2014. https://doi.org/10.1186/2047-217X-3-24.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987. https://doi.org/10.1128/jb.169.12.5429-5433.1987.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002. https://doi.org/10.1046/j.1365-2958.2002.02839.x.

    Article  PubMed  Google Scholar 

  22. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007. https://doi.org/10.1126/science.1138140.

    Article  PubMed  Google Scholar 

  23. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008. https://doi.org/10.1126/science.1159689.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010. https://doi.org/10.1038/nature09523.

    Article  PubMed  Google Scholar 

  25. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012. https://doi.org/10.1126/science.1225829.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ledford H, Callaway E. Pioneers of revolutionary CRISPR gene editing win chemistry Nobel. Nature. 2020. https://doi.org/10.1038/d41586-020-02765-9.

    Article  PubMed  Google Scholar 

  27. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013. https://doi.org/10.1126/science.1231143.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013. https://doi.org/10.1126/science.1232033.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013. https://doi.org/10.1038/nbt.2507.

    Article  PubMed  Google Scholar 

  30. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci. 2013. https://doi.org/10.1073/pnas.1313587110.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013. https://doi.org/10.1038/nmeth.2681.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014. https://doi.org/10.1038/nbt.2908.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014. https://doi.org/10.1038/nbt.2909.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016. https://doi.org/10.1038/nature17946.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019. https://doi.org/10.1038/s41586-019-1711-4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013. https://doi.org/10.1016/j.cell.2013.04.025.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014. https://doi.org/10.1126/science.1247005.

    Article  PubMed  Google Scholar 

  38. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014. https://doi.org/10.1038/nbt.2800.

    Article  PubMed  Google Scholar 

  39. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014. https://doi.org/10.1038/nature13166.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol. 2013. https://doi.org/10.1038/nbt.2652.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014. https://doi.org/10.1038/nbt.2808.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002. https://doi.org/10.1038/nbt0302-251.

    Article  PubMed  Google Scholar 

  43. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003. https://doi.org/10.1126/science.1078942.

    Article  PubMed  Google Scholar 

  44. Chen G, Qian H, Starzl T, Sun H, Garcia B, Wang X, et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med. 2005. https://doi.org/10.1038/nm1330.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM, et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med. 2005. https://doi.org/10.1038/nm1171.

    Article  PubMed  Google Scholar 

  46. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation. 2015. https://doi.org/10.1111/xen.12161.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Loveland BE, Milland J, Kyriakou P, Thorley BR, Christiansen D, Lanteri MB, et al. Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons. Xenotransplantation. 2004. https://doi.org/10.1046/j.1399-3089.2003.00103.x.

    Article  PubMed  Google Scholar 

  48. Azimzadeh AM, Kelishadi SS, Ezzelarab MB, Singh AK, Stoddard T, Iwase H, et al. Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein. Xenotransplantation. 2015. https://doi.org/10.1111/xen.12176.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Mohiuddin MM, Goerlich CE, Singh AK, Zhang T, Tatarov I, Lewis B, et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation. 2022. https://doi.org/10.1111/xen.12744. (GHR KO added to a multi-gene edited cardiac xenograft model resulted in significantly extended graft survival by preventing graft hypertrophy.)

    Article  PubMed  Google Scholar 

  50. Petersen B, Ramackers W, Tiede A, Lucas-Hahn A, Herrmann D, Barg-Kues B, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation. 2009. https://doi.org/10.1111/j.1399-3089.2009.00537.x.

    Article  PubMed  Google Scholar 

  51. Singh AK, Chan JL, DiChiacchio L, Hardy NL, Corcoran PC, Lewis BGT, et al. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation. 2019. https://doi.org/10.1111/xen.12465.

    Article  PubMed  Google Scholar 

  52. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci. 2007. https://doi.org/10.1073/pnas.0609661104.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queisser AL, et al. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation. 2011. https://doi.org/10.1111/j.1399-3089.2011.00674.x.

    Article  PubMed  Google Scholar 

  54. Langin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 2018. https://doi.org/10.1038/s41586-018-0765-z.

    Article  PubMed  Google Scholar 

  55. Goerlich CE, Griffith B, Hanna P, Hong SN, Ayares D, Singh AK, et al. The growth of xenotransplanted hearts can be reduced with growth hormone receptor knockout pig donors. J Thorac Cardiovasc Surg. 2021. https://doi.org/10.1016/j.jtcvs.2021.07.051.

    Article  PubMed  Google Scholar 

  56. Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017. https://doi.org/10.1126/science.aan4187.

    Article  PubMed  PubMed Central  Google Scholar 

  57. • Yue Y, Xu W, Kan Y, Zhao HY, Zhou Y, Song X, et al. Extensive germline genome engineering in pigs. Nat Biomed Eng. 2021. https://doi.org/10.1038/s41551-020-00613-9. (CRISPR/Cas9 and transposon technologies were used to produce PERV KO pigs with 13 additional genetic modifications.)

    Article  PubMed  Google Scholar 

  58. Wang ZY, Burlak C, Estrada JL, Li P, Tector MF, Tector AJ. Erythrocytes from GGTA1/CMAH knockout pigs: implications for xenotransfusion and testing in non-human primates. Xenotransplantation. 2014. https://doi.org/10.1111/xen.12106.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Ariyoshi Y, Takeuchi K, Pomposelli T, Ekanayake-Alper DK, Shimizu A, Boyd L, et al. Antibody reactivity with new antigens revealed in multi-transgenic triple knockout pigs may cause early loss of pig kidneys in baboons. Xenotransplantation. 2021. https://doi.org/10.1111/xen.12642. (Baboons transplanted with triple glycan KO pig kidneys and vascularized thymic grafts demonstrated unmasking of neoantigens that were associated with accelerated graft rejection.)

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yamada K, Shimizu A, Ierino FL, Utsugi R, Barth RN, Esnaola N, et al. Thymic transplantation in miniature swine. I. Development and function of the “thymokidney.” Transplantation. 1999. https://doi.org/10.1097/00007890-199912150-00011.

    Article  PubMed  Google Scholar 

  61. Griesemer AD, Hirakata A, Shimizu A, Moran S, Tena A, Iwaki H, et al. Results of gal-knockout porcine thymokidney xenografts. Am J Transplant. 2009. https://doi.org/10.1111/j.1600-6143.2009.02849.x.

    Article  PubMed  PubMed Central  Google Scholar 

  62. • Takeuchi K, Ariyoshi Y, Shimizu A, Okumura Y, Cara-Fuentes G, Garcia GE, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation. 2021. https://doi.org/10.1111/xen.12708. (Podocyte-specific expression of human CD47 in pig kidney xenografts prevented development of proteinuria, but concurrent expression of human CD47 in pig kidney xenografts tubules was associated with a destructive inflammatory process.)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, et al. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol. 2014. https://doi.org/10.4049/jimmunol.1402059.

    Article  PubMed  Google Scholar 

  64. Fischer K, Rieblinger B, Hein R, Sfriso R, Zuber J, Fischer A, et al. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2. Xenotransplantation. 2020. https://doi.org/10.1111/xen.12560.

    Article  PubMed  Google Scholar 

  65. Yamada K, Ariyoshi Y, Pomposelli T, Sekijima M. Co-transplantation of vascularized thymic graft with kidney in pig-to-nonhuman primates for the induction of tolerance across xenogeneic barriers. Methods Mol Biol. 2020. https://doi.org/10.1007/978-1-0716-0255-3_11.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tasaki M, Wamala I, Tena A, Villani V, Sekijima M, Pathiraja V, et al. High incidence of xenogenic bone marrow engraftment in pig-to-baboon intra-bone bone marrow transplantation. Am J Transplant. 2015. https://doi.org/10.1111/ajt.13070.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Watanabe H, Ariyoshi Y, Pomposelli T, Takeuchi K, Ekanayake-Alper DK, Boyd LK, et al. Intra-bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs chimerism to >60 days and promotes increased porcine lung transplant survival. Xenotransplantation. 2020. https://doi.org/10.1111/xen.12552.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe A. Stewart.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Expanding Role of Technology in Organ Transplant

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, Z.A. Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology. Curr Transpl Rep 9, 268–275 (2022). https://doi.org/10.1007/s40472-022-00380-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-022-00380-3

Keywords

Navigation