Skip to main content

Advertisement

Log in

Microfluidic Technology for Evaluating and Preserving Islet Function for Islet Transplant in Type 1 Diabetes

  • Cellular Transplants (G Orlando and A Asthana, Section Editors)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Over the years, microfluidics has become a mature technology, providing as an excellent platform for islet study. This review covers recent advances and developments of microfluidic systems for evaluating and preserving islet function for cell-based therapy in type 1 diabetes (T1D), as well as selected articles published over the past 3 years.

Recent Findings

Novel microfluidic devices integrated with advanced imaging and biosensor technologies allow live-cell monitoring of multiple metabolic components, which are highly involved in islet function but previously directly undetectable in classic procedures. Additionally, considerable progress in the development of microfluidic systems for studying aggregated pseudo-islets and encapsulated islets show great potential of using microfluidics for biomanufacturing of islet biologics for cell replacement therapy in T1D.

Summary

Although still in the proof-of-concept stage, microfluidic technology has shown numerous advantages over traditional methodology on multi-parameter characterization of not only isolated pancreatic islets but also new emerging islet-like cell biologics for basic, translational, and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gepts W. Islet changes suggesting a possible immune aetiology of human diabetes mellitus. Acta Endocrinol Suppl (Copenh). 1976;205:95–106.

    CAS  PubMed  Google Scholar 

  2. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PG, Gamble DR. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med. 1985;313(6):353–60. https://doi.org/10.1056/NEJM198508083130604.

    Article  CAS  PubMed  Google Scholar 

  3. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86. https://doi.org/10.1001/jama.2014.3201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prevention CfDCa. National Diabetes Statistics Report. Centers for Disease Control and Prevention. National Diabetes Statistics Report website. https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed 8 June 2022.

  5. McCall AL, Farhy LS. Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control. Minerva Endocrinol. 2013;38(2):145–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. •• Abadpour S, Aizenshtadt A, Olsen PA, Shoji K, Wilson SR, Krauss S, et al. Pancreas-on-a-chip technology for transplantation applications. Curr Diab Rep. 2020;20(12):72. https://doi.org/10.1007/s11892-020-01357-1. This article summarizes the current progress of human pancreas-on-a-chip (PoC) technology and evaluates the possibility of using this technology for clinical islet transplantation. As a rapid developing area, many examples of PoC platforms mentioned in this review article have shown that PoC can better reflect the complexity of islet function and thus make such systems beneficial for developing clinical strategies in type 1 diabetes treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8. https://doi.org/10.1056/NEJM200007273430401.

    Article  CAS  PubMed  Google Scholar 

  8. Gangemi A, Salehi P, Hatipoglu B, Martellotto J, Barbaro B, Kuechle JB, et al. Islet transplantation for brittle type 1 diabetes: the UIC protocol. Am J Transplant. 2008;8(6):1250–61. https://doi.org/10.1111/j.1600-6143.2008.02234.x.

    Article  CAS  PubMed  Google Scholar 

  9. Holzer J, Wu J, He Y, Ma M, Xing Y, Oberholzer J, Wang Y. Application of Microfluidic Biochips for Human Islet Transplantation. OBM Transplantation 2018;2(4):034. https://doi.org/10.21926/obm.transplant.1804034.

  10. Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R, Bellin MD, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39(7):1230–40. https://doi.org/10.2337/dc15-1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ricordi C, Goldstein JS, Balamurugan AN, Szot GL, Kin T, Liu C, et al. National Institutes of health-sponsored clinical islet transplantation consortium phase 3 trial: manufacture of a complex cellular product at eight processing facilities. Diabetes. 2016;65(11):3418–28. https://doi.org/10.2337/db16-0234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rorsman P, Ashcroft FM. Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev. 2018;98(1):117–214. https://doi.org/10.1152/physrev.00008.2017.

    Article  CAS  PubMed  Google Scholar 

  13. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren P-O, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci. 2006;103(7):2334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sokolowska P, Janikiewicz J, Jastrzebska E, Brzozka Z, Dobrzyn A. Combinations of regenerative medicine and Lab-on-a-chip systems: new hope to restoring the proper function of pancreatic islets in diabetes. Biosens Bioelectron. 2020;167:112451. https://doi.org/10.1016/j.bios.2020.112451.

    Article  CAS  PubMed  Google Scholar 

  15. Henquin JC, Nenquin M, Stiernet P, Ahren B. In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in beta-cells. Diabetes. 2006;55(2):441–51. https://doi.org/10.2337/diabetes.55.02.06.db05-1051.

    Article  CAS  PubMed  Google Scholar 

  16. Henquin JC, Schmeer W, Nenquin M, Meissner HP. Effects of a calcium channel agonist on the electrical, ionic and secretory events in mouse pancreatic B-cells. Biochem Biophys Res Commun. 1985;131(2):980–6. https://doi.org/10.1016/0006-291x(85)91336-1.

    Article  CAS  PubMed  Google Scholar 

  17. Xing Y, Zhang P, He Y, Yu X, Lu S, Ghamsari F, et al. 16 - Microfluidic applications on pancreatic islets and β-cells study for human islet transplant. In: Li X, Zhou Y, editors. Microfluidic Devices for Biomedical Applications (2nd Edition). Woodhead Publishing; 2021. p. 617–58.

  18. Armann B, Hanson M, Hatch E, Steffen A, Fernandez L. Quantification of basal and stimulated ROS levels as predictors of islet potency and function. Am J Transplant. 2007;7(1):38–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Papas KK, Pisania A, Wu H, Weir GC, Colton CK. A stirred microchamber for oxygen consumption rate measurements with pancreatic islets. Biotechnol Bioeng. 2007;98(5):1071–82. https://doi.org/10.1002/bit.21486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Papas KK, Suszynski TM, Colton CK. Islet assessment for transplantation. Curr Opin Organ Transplant. 2009;14(6):674–82. https://doi.org/10.1097/MOT.0b013e328332a489.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Street CN, Lakey JR, Shapiro AM, Imes S, Rajotte RV, Ryan EA, et al. Islet graft assessment in the Edmonton Protocol: implications for predicting long-term clinical outcome. Diabetes. 2004;53(12):3107–14. https://doi.org/10.2337/diabetes.53.12.3107.

    Article  CAS  PubMed  Google Scholar 

  22. Sweet I, Gilbert M, Scott S, Todorov I, Jensen R, Nair I, et al. Glucose-stimulated increment in oxygen consumption rate as a standardized test of human islet quality. Am J Transplant. 2008;8(1):183–92.

    CAS  PubMed  Google Scholar 

  23. Bertuzzi F, Verzaro R, Provenzano V, Ricordi C. Brittle type 1 diabetes mellitus. Curr Med Chem. 2007;14(16):1739–44. https://doi.org/10.2174/092986707781058922.

    Article  CAS  PubMed  Google Scholar 

  24. London NJ, Thirdborough SM, Swift SM, Bell PR, James RF. The diabetic “human reconstituted” severe combined immunodeficient (SCID-hu) mouse: a model for isogeneic, allogeneic, and xenogeneic human islet transplantation. Transplant Proc. 1991;23(1 Pt 1):749.

    CAS  PubMed  Google Scholar 

  25. Ricordi C, Lakey JR, Hering BJ. Challenges toward standardization of islet isolation technology. Transplant Proc. 2001;33(1–2):1709. https://doi.org/10.1016/s0041-1345(00)02651-8.

    Article  CAS  PubMed  Google Scholar 

  26. Papas KK, Colton CK, Nelson RA, Rozak PR, Avgoustiniatos ES, Scott WE 3rd, et al. Human islet oxygen consumption rate and DNA measurements predict diabetes reversal in nude mice. Am J Transplant. 2007;7(3):707–13. https://doi.org/10.1111/j.1600-6143.2006.01655.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang W, Upshaw L, Strong DM, Robertson RP, Reems J. Increased oxygen consumption rates in response to high glucose detected by a novel oxygen biosensor system in non-human primate and human islets. J Endocrinol. 2005;185(3):445–55. https://doi.org/10.1677/joe.1.06092.

    Article  CAS  PubMed  Google Scholar 

  28. Goto M, Holgersson J, Kumagai-Braesch M, Korsgren O. The ADP/ATP ratio: a novel predictive assay for quality assessment of isolated pancreatic islets. Am J Transplant. 2006;6(10):2483–7. https://doi.org/10.1111/j.1600-6143.2006.01474.x.

    Article  CAS  PubMed  Google Scholar 

  29. Kim JH, Park SG, Lee HN, Lee YY, Park HS, Kim HI, et al. ATP measurement predicts porcine islet transplantation outcome in nude mice. Transplantation. 2009;87(2):166–9. https://doi.org/10.1097/TP.0b013e318191e925.

    Article  CAS  PubMed  Google Scholar 

  30. Spigelman AF, Dai X, MacDonald PE. Voltage-dependent K(+) channels are positive regulators of alpha cell action potential generation and glucagon secretion in mice and humans. Diabetologia. 2010;53(9):1917–26. https://doi.org/10.1007/s00125-010-1759-z.

    Article  CAS  PubMed  Google Scholar 

  31. Bentsi-Barnes K, Doyle ME, Abad D, Kandeel F, Al-Abdullah I. Detailed protocol for evaluation of dynamic perifusion of human islets to assess beta-cell function. Islets. 2011;3(5):284–90. https://doi.org/10.4161/isl.3.5.15938.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lacy PE, Walker MM, Fink CJ. Perifusion of isolated rat islets in vitro. Participation of the microtubular system in the biphasic release of insulin. Diabetes. 1972;21(10):987–98. https://doi.org/10.2337/diab.21.10.987.

    Article  CAS  PubMed  Google Scholar 

  33. Chen D, Du W, Liu Y, Liu W, Kuznetsov A, Mendez FE, et al. The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc Natl Acad Sci U S A. 2008;105(44):16843–8. https://doi.org/10.1073/pnas.0807916105.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Lo JF, Mendoza-Elias JE, Adewola AF, Harvat TA, Kinzer KP, et al. Application of microfluidic technology to pancreatic islet research: first decade of endeavor. Bioanalysis. 2010;2(10):1729–44. https://doi.org/10.4155/bio.10.131.

    Article  CAS  PubMed  Google Scholar 

  35. • Zbinden A, Marzi J, Schlunder K, Probst C, Urbanczyk M, Black S, et al. Non-invasive marker-independent high content analysis of a microphysiological human pancreas-on-a-chip model. Matrix Biol. 2020;85–86:205–20. https://doi.org/10.1016/j.matbio.2019.06.008. This article presents an islets-on-chip system integrated with hydrodynamic trapping array in which human pseudo-islets can be immobilized for in situ Raman imaging. Using this microfluidic platform, not only insulin but also many metabolic components involved in islet function can be assessed.

    Article  CAS  PubMed  Google Scholar 

  36. Jun Y, Lee J, Choi S, Yang JH, Sander M, Chung S, et al. In vivo-mimicking microfluidic perfusion culture of pancreatic islet spheroids. Sci Adv. 2019;5(11):eaax4520. https://doi.org/10.1126/sciadv.aax4520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhumpa R, Truong TM, Wang X, Bertram R, Roper MG. Negative feedback synchronizes islets of Langerhans. Biophys J. 2014;106(10):2275–82. https://doi.org/10.1016/j.bpj.2014.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lomasney AR, Yi L, Roper MG. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device. Anal Chem. 2013;85(16):7919–25. https://doi.org/10.1021/ac401625g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohammed JS, Wang Y, Harvat TA, Oberholzer J, Eddington DT. Microfluidic device for multimodal characterization of pancreatic islets. Lab Chip. 2009;9(1):97–106. https://doi.org/10.1039/b809590f.

    Article  CAS  PubMed  Google Scholar 

  40. Lee D, Wang Y, Mendoza-Elias JE, Adewola AF, Harvat TA, Kinzer K, et al. Dual microfluidic perifusion networks for concurrent islet perifusion and optical imaging. Biomed Microdevices. 2012;14(1):7–16. https://doi.org/10.1007/s10544-011-9580-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dishinger JF, Reid KR, Kennedy RT. Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem. 2009;81(8):3119–27. https://doi.org/10.1021/ac900109t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee SH, Hong S, Song J, Cho B, Han EJ, Kondapavulur S et al. Microphysiological analysis platform of pancreatic islet beta-cell spheroids. Adv Healthc Mater. 2018;7(2). https://doi.org/10.1002/adhm.201701111.

  43. Glieberman AL, Pope BD, Zimmerman JF, Liu Q, Ferrier JP, Kenty JHR, et al. Synchronized stimulation and continuous insulin sensing in a microfluidic human islet on a chip designed for scalable manufacturing. Lab Chip. 2019;19(18):2993–3010. https://doi.org/10.1039/c9lc00253g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Silva PN, Green BJ, Altamentova SM, Rocheleau JV. A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage. Lab Chip. 2013;13(22):4374–84.

    Article  CAS  PubMed  Google Scholar 

  45. Nourmohammadzadeh M, Lo JF, Bochenek M, Mendoza-Elias JE, Wang Q, Li Z, et al. Microfluidic array with integrated oxygenation control for real-time live-cell imaging: effect of hypoxia on physiology of microencapsulated pancreatic islets. Anal Chem. 2013;85(23):11240–9. https://doi.org/10.1021/ac401297v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lam AK, Silva PN, Altamentova SM, Rocheleau JV. Quantitative imaging of electron transfer flavoprotein autofluorescence reveals the dynamics of lipid partitioning in living pancreatic islets. Integr Biol (Camb). 2012;4(8):838–46. https://doi.org/10.1039/c2ib20075a.

    Article  CAS  PubMed  Google Scholar 

  47. Rocheleau JV, Walker GM, Head WS, McGuinness OP, Piston DW. Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proc Natl Acad Sci U S A. 2004;101(35):12899–903. https://doi.org/10.1073/pnas.0405149101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bransky A, Korin N, Khoury M, Levenberg S. A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip. 2009;9(4):516–20. https://doi.org/10.1039/b814810d.

    Article  CAS  PubMed  Google Scholar 

  49. Chen A, Pan T. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations. Lab Chip. 2014;14(17):3401–8. https://doi.org/10.1039/c4lc00540f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hulme PE. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol. 2009;46(1):10–8.

    Article  Google Scholar 

  51. Xu ZR, Zhong CH, Guan YX, Chen XW, Wang JH, Fang ZL. A microfluidic flow injection system for DNA assay with fluids driven by an on-chip integrated pump based on capillary and evaporation effects. Lab Chip. 2008;8(10):1658–63. https://doi.org/10.1039/b805774e.

    Article  CAS  PubMed  Google Scholar 

  52. Chang J-Y, Wang S, Allen JS, Lee SH, Chang ST, Choi Y-K, et al. A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping. Biomicrofluidics. 2014;8(4):044116.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chakraborty S. Dynamics of capillary flow of blood into a microfluidic channel. Lab Chip. 2005;5(4):421–30.

    Article  CAS  PubMed  Google Scholar 

  54. Xing Y, Nourmohammadzadeh M, Elias JE, Chan M, Chen Z, McGarrigle JJ, et al. A pumpless microfluidic device driven by surface tension for pancreatic islet analysis. Biomed Microdevices. 2016;18(5):80. https://doi.org/10.1007/s10544-016-0109-4.

    Article  CAS  PubMed  Google Scholar 

  55. Wu J, Zheng G, Lee LM. Optical imaging techniques in microfluidics and their applications. Lab Chip. 2012;12(19):3566–75.

    Article  CAS  PubMed  Google Scholar 

  56. Essaouiba A, Okitsu T, Jellali R, Shinohara M, Danoy M, Tauran Y, et al. Microwell-based pancreas-on-chip model enhances genes expression and functionality of rat islets of Langerhans. Mol Cell Endocrinol. 2020;514:110892. https://doi.org/10.1016/j.mce.2020.110892.

    Article  CAS  PubMed  Google Scholar 

  57. • Sokolowska P, Zukowski K, Janikiewicz J, Jastrzebska E, Dobrzyn A, Brzozka Z. Islet-on-a-chip: Biomimetic micropillar-based microfluidic system for three-dimensional pancreatic islet cell culture. Biosens Bioelectron. 2021;183:113215. https://doi.org/10.1016/j.bios.2021.113215. This article presents the first microfluidic system which enables the on-chip formation and 3D dynamic culture of pseudo-islets composed of both commercially available islet α- and β-cells.

    Article  CAS  PubMed  Google Scholar 

  58. Quintard C, Tubbs E, Achard JL, Navarro F, Gidrol X, Fouillet Y. Microfluidic device integrating a network of hyper-elastic valves for automated glucose stimulation and insulin secretion collection from a single pancreatic islet. Biosens Bioelectron. 2022;202:113967. https://doi.org/10.1016/j.bios.2022.113967.

    Article  CAS  PubMed  Google Scholar 

  59. Adablah JE, Wang Y, Donohue M, Roper MG. Profiling glucose-stimulated and M3 receptor-activated insulin secretion dynamics from islets of Langerhans using an extended-lifetime fluorescence dye. Anal Chem. 2020;92(12):8464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eaton WJ, Roper MG. A microfluidic system for monitoring glucagon secretion from human pancreatic islets of Langerhans. Anal Methods. 2021;13(32):3614–9. https://doi.org/10.1039/d1ay00703c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. • Misun PM, Yesildag B, Forschler F, Neelakandhan A, Rousset N, Biernath A, et al. In vitro platform for studying human insulin release dynamics of single pancreatic islet microtissues at high resolution. Adv Biosyst. 2020;4(3):1900291. This article presents a hanging-drop-based islet perifusion microfluidic system in which the insulin secretion profile can be measured. More importantly, reaggregated human islets formed uniformly within hanging drops can serve as reproducible models for studying islet function at low sample-to-sample variation and high temporal resolution.

    Article  Google Scholar 

  62. Wu Jin P, Rousset N, Hierlemann A, Misun PM. A microfluidic hanging-drop-based islet perifusion system for studying glucose-stimulated insulin secretion from multiple individual pancreatic islets. Front Bioeng Biotechnol. 2021;9:674431. https://doi.org/10.3389/fbioe.2021.674431.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Walker JT, Haliyur R, Nelson HA, Ishahak M, Poffenberger G, Aramandla R et al. Integrated human pseudoislet system and microfluidic platform demonstrate differences in GPCR signaling in islet cells. JCI Insight. 2020;5(10). https://doi.org/10.1172/jci.insight.137017.

  64. Gomez Y, Navarro-Tableros V, Tetta C, Camussi G, Brizzi MF. A versatile model of microfluidic perifusion system for the evaluation of C-peptide secretion profiles: comparison between human pancreatic islets and HLSC-derived islet-like structures. Biomedicines. 2020;8(2):26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schulze T, Mattern K, Erfle P, Bruning D, Scherneck S, Dietzel A, et al. A parallel perifusion slide from glass for the functional and morphological analysis of pancreatic islets. Front Bioeng Biotechnol. 2021;9:615639. https://doi.org/10.3389/fbioe.2021.615639.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Greenwald EC, Mehta S, Zhang J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem Rev. 2018;118(24):11707–94. https://doi.org/10.1021/acs.chemrev.8b00333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Eason MG, Pandelieva AT, Mayer MM, Khan ST, Garcia HG, Chica RA. Genetically encoded fluorescent biosensor for rapid detection of protein expression. ACS Synth Biol. 2020;9(11):2955–63. https://doi.org/10.1021/acssynbio.0c00407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim H, Ju J, Lee HN, Chun H, Seong J. Genetically encoded biosensors based on fluorescent proteins. Sensors (Basel). 2021;21(3). https://doi.org/10.3390/s21030795.

  69. Chen M, Zhang S, Xing Y, Li X, He Y, Wang Y, et al. Genetically encoded, photostable indicators to image dynamic Zn(2+) secretion of pancreatic islets. Anal Chem. 2019;91(19):12212–9. https://doi.org/10.1021/acs.analchem.9b01802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pezzotti G. Raman spectroscopy in cell biology and microbiology. J Raman Spectrosc. 2021;52(12):2348–443.

    Article  CAS  Google Scholar 

  71. Bergholt MS, Serio A, Albro MB. Raman spectroscopy: guiding light for the extracellular matrix. Front Bioeng Biotechnol. 2019;7:303. https://doi.org/10.3389/fbioe.2019.00303.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ramachandran K, Peng X, Bokvist K, Stehno-Bittel L. Assessment of re-aggregated human pancreatic islets for secondary drug screening. Br J Pharmacol. 2014;171(12):3010–22. https://doi.org/10.1111/bph.12622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Papas KK, De Leon H, Suszynski TM, Johnson RC. Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev. 2019;139:139–56. https://doi.org/10.1016/j.addr.2019.05.002.

    Article  CAS  PubMed  Google Scholar 

  74. Haycock JW. 3D cell culture: a review of current approaches and techniques. Methods Mol Biol. 2011;695:1–15. https://doi.org/10.1007/978-1-60761-984-0_1.

    Article  CAS  PubMed  Google Scholar 

  75. •• Patel S, Ishahak M, Chaimov D, Velraj A, LaShoto D, Hagan D, et al. Organoid microphysiological system preserves pancreatic islet function within 3D matrix. Sci Adv. 2021;7(7):eaba5515. This article presents two MPSs to culture human and rodent pancreatic islets within 3D alginate hydrogel. Both systems show the prolonged functional survival of perifused islets within hydrogel matrices for >10 days. This study highlights the capacity of MPSs to elucidate complex islet physiological and pathophysiologic processes by combining dynamic 3D culture, optical assessment, and functional assays.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Castiello FR, Heileman K, Tabrizian M. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities. Lab Chip. 2016;16(3):409–31. https://doi.org/10.1039/c5lc01046b.

    Article  CAS  PubMed  Google Scholar 

  77. Sankar KS, Green BJ, Crocker AR, Verity JE, Altamentova SM, Rocheleau JV. Culturing pancreatic islets in microfluidic flow enhances morphology of the associated endothelial cells. PLoS ONE. 2011;6(9):e24904. https://doi.org/10.1371/journal.pone.0024904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13(8):1489–500. https://doi.org/10.1039/c3lc41320a.

    Article  CAS  PubMed  Google Scholar 

  79. Lee H, Chung M, Jeon NL. Microvasculature: an essential component for organ-on-chip systems. MRS Bull. 2014;39(1):51–9.

    Article  Google Scholar 

  80. Rambol MH, Han E, Niklason LE. Microvessel Network formation and interactions with pancreatic islets in three-dimensional chip cultures. Tissue Eng Part A. 2020;26(9–10):556–68. https://doi.org/10.1089/ten.TEA.2019.0186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haase K, Kamm RD. Advances in on-chip vascularization. Regen Med. 2017;12(3):285–302. https://doi.org/10.2217/rme-2016-0152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bender RHF, O’Donnell BT, Shergill B, Pham BQ, Juat DJ, Hatch MS, et al. A vascularized 3D model of the human pancreatic islet for ex vivo study of immune cell-islet interaction. bioRxiv. 2021:2021.12.21.473744. https://doi.org/10.1101/2021.12.21.473744.

  83. Wang P, Schuetz C, Ross A, Dai G, Markmann JF, Moore A. Immune rejection after pancreatic islet cell transplantation: in vivo dual contrast-enhanced MR imaging in a mouse model. Radiology. 2013;266(3):822–30. https://doi.org/10.1148/radiol.12121129.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kanak MA, Takita M, Kunnathodi F, Lawrence MC, Levy MF, Naziruddin B. Inflammatory response in islet transplantation. Int J Endocrinol. 2014;2014:451035. https://doi.org/10.1155/2014/451035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ruiz R, Kirk AD. Chapter 97 - Long-Term Toxicity of Immunosuppressive Therapy. In: Busuttil RW, Klintmalm GBG, editors. Transplantation of the Liver (3rd Edition). Philadelphia: W.B. Saunders; 2015. p. 1354–63.

  86. Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev. 2008;60(2):124–45. https://doi.org/10.1016/j.addr.2007.08.034.

    Article  CAS  PubMed  Google Scholar 

  87. •• Zhang Q, Gonelle-Gispert C, Li Y, Geng Z, Gerber-Lemaire S, Wang Y, et al. Islet encapsulation: new developments for the treatment of type 1 diabetes. Front Immunol. 2022;13:869984. https://doi.org/10.3389/fimmu.2022.869984. This review article systematically summarizes the development of islet encapsulation as a promising future treatment for type 1 diabetes. Multiple parameters affecting the outcome of islet encapsulation, such as choices of biomaterials and encapsulation methods, are included in the discussion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alkayyali T, Cameron T, Haltli B, Kerr RG, Ahmadi A. Microfluidic and cross-linking methods for encapsulation of living cells and bacteria—a review. Anal Chim Acta. 2019;1053:1–21. https://doi.org/10.1016/j.aca.2018.12.056.

    Article  CAS  PubMed  Google Scholar 

  89. Chen R, Sun Z, Chen D. Chapter 11 - Droplet-based microfluidics for cell encapsulation and delivery. In: Santos HA, Liu D, Zhang H, editors. Microfluidics for Pharmaceutical Applications. William Andrew Publishing; 2019. p. 307–35.

  90. Mohajeri M, Eskandari M, Ghazali ZS, Ghazali HS. Cell encapsulation in alginate-based microgels using droplet microfluidics: a review on gelation methods and applications. Biomed Phys Eng Express. 2022;8(2):022001.

    Article  Google Scholar 

  91. Liu H, Wang Y, Wang H, Zhao M, Tao T, Zhang X, et al. A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Adv Sci (Weinh). 2020;7(11):1903739. https://doi.org/10.1002/advs.201903739.

    Article  CAS  PubMed  Google Scholar 

  92. Laporte C, Tubbs E, Pierron M, Gallego A, Moisan A, Lamarche F, et al. Improved human islets’ viability and functionality with mesenchymal stem cells and arg-gly-asp tripeptides supplementation of alginate micro-encapsulated islets in vitro. Biochem Biophys Res Commun. 2020;528(4):650–7. https://doi.org/10.1016/j.bbrc.2020.05.107.

    Article  CAS  PubMed  Google Scholar 

  93. • Wang H, Liu H, Zhang X, Wang Y, Zhao M, Chen W, et al. One-step generation of aqueous-droplet-filled hydrogel fibers as organoid carriers using an all-in-water microfluidic system. ACS Appl Mater Interfaces. 2021;13(2):3199–208. This article presents a microfluidic bio-fabrication system for generation of aqueous-droplet-filled alginate microfibers. Human stem-cell derived islet cells encapsulated in such microfibers can form organoids and maintain insulin-secretion function in aqueous microenvironment unlike classic alginate-based islet capsules.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Xing or José Oberholzer.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cellular Transplants

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Li, L., Yu, X. et al. Microfluidic Technology for Evaluating and Preserving Islet Function for Islet Transplant in Type 1 Diabetes. Curr Transpl Rep 9, 287–296 (2022). https://doi.org/10.1007/s40472-022-00377-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-022-00377-y

Keywords

Navigation