Skip to main content

Advertisement

Log in

Tolerance Protocols in Large Animal VCA Models—Comprehensive Review

  • Vascularized Composite Allografts (V Gorantla, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The clinical application of vascularized composite allografts (VCA) has continue to expand each year as new transplants are performed. However, chronic rejection and the many side effects from chronic immunosuppression continue to inhibit widespread application of VCA. Immune tolerance to VCA would address these two issues and shift the risk-benefit ratio to allow for the more widespread application of these transplants. Future development of clinical tolerance protocols will be generated from pre-clinical experiments performed in large animal models. This article reviews the current state of large animal tolerance protocols published for VCA.

Recent Findings

The most successful tolerance protocols thus far include the use of hematopoietic stem cell transplant with non-myeloablative preconditioning and establishment of donor cell chimerism. In addition to this strategy, several groups have examined the inclusion of mesenchymal and adipose-derived stem cells to address the complications related to the use of hematopoietic stem cell transplant (such as graft versus host disease).

Summary

These large animal models are critical to development of a viable pre-clinical model for tolerance in vascularized composite allografts that can deliver a tolerant state with minimal harm to the recipient of these non-life-saving transplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wilks DJ, Clark B, Kay SPJ. The histocompatibility and immunogenetics of hand transplantation. Int J Immunogenet. 2020;47(1):24–7. https://doi.org/10.1111/iji.12469.

    Article  CAS  PubMed  Google Scholar 

  2. Kanitakis J, Petruzzo P, Badet L, Gazarian A, Thaunat O, Testelin S, et al. Chronic rejection in human vascularized composite Allotransplantation (hand and face recipients): an update. Transplantation. 2016;100(10):2053–61. https://doi.org/10.1097/tp.0000000000001248.

    Article  PubMed  Google Scholar 

  3. Krezdorn N, Tasigiorgos S, Wo L, Lopdrup R, Turk M, Kiwanuka H, et al. Kidney dysfunction after vascularized composite Allotransplantation. Transplant Direct. 2018;4(7):e362. https://doi.org/10.1097/txd.0000000000000795.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003;349(10):931–40. https://doi.org/10.1056/NEJMoa021744.

    Article  CAS  PubMed  Google Scholar 

  5. Diaz-Siso JR, Sosin M, Plana NM, Rodriguez ED. Face transplantation: complications, implications, and an update for the oncologic surgeon. J Surg Oncol. 2016;113(8):971–5. https://doi.org/10.1002/jso.24211.

    Article  PubMed  Google Scholar 

  6. Siemionow M, Gatherwright J, Djohan R, Papay F. Cost analysis of conventional facial reconstruction procedures followed by face transplantation. Am J Transplant. 2011;11(2):379–85. https://doi.org/10.1111/j.1600-6143.2010.03373.x.

    Article  CAS  PubMed  Google Scholar 

  7. Morelon E, Petruzzo P, Kanitakis J, Dakpe S, Thaunat O, Dubois V, et al. Face transplantation: partial graft loss of the first case 10 years later. Am J Transplant. 2017;17(7):1935–40. https://doi.org/10.1111/ajt.14218.

    Article  CAS  PubMed  Google Scholar 

  8. Krezdorn N, Pomahac B. Chronic allograft deterioration: a clinical reality in vascularized composite Allotransplantation. Am J Transplant. 2017;17(7):1703–4. https://doi.org/10.1111/ajt.14291.

    Article  CAS  PubMed  Google Scholar 

  9. Ng ZY, Lellouch AG, Rosales IA, Geoghegan L, Gama AR, Colvin RB, et al. Graft vasculopathy of vascularized composite allografts in humans: a literature review and retrospective study. Transpl Int. 2019;32(8):831–8. https://doi.org/10.1111/tri.13421.

    Article  PubMed  Google Scholar 

  10. Li Y, Li XC, Zheng XX, Wells AD, Turka LA, Strom TB. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med. 1999;5(11):1298–302. https://doi.org/10.1038/15256.

    Article  CAS  PubMed  Google Scholar 

  11. Kanmaz T, Fechner JJ Jr, Torrealba J, Kim HT, Dong Y, Oberley TD, et al. Monotherapy with the novel human anti-CD154 monoclonal antibody ABI793 in rhesus monkey renal transplantation model. Transplantation. 2004;77(6):914–20. https://doi.org/10.1097/01.tp.0000116392.72152.75.

    Article  CAS  PubMed  Google Scholar 

  12. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med. 2000;6(2):114. https://doi.org/10.1038/72162.

    Article  CAS  PubMed  Google Scholar 

  13. Schwarz C, Mahr B, Muckenhuber M, Wekerle T. Belatacept/CTLA4Ig: an update and critical appraisal of preclinical and clinical results. Expert Rev Clin Immunol. 2018;14(7):583–92. https://doi.org/10.1080/1744666x.2018.1485489.

    Article  CAS  PubMed  Google Scholar 

  14. Okimura K, Maeta K, Kobayashi N, Goto M, Kano N, Ishihara T, et al. Characterization of ASKP1240, a fully human antibody targeting human CD40 with potent immunosuppressive effects. Am J Transplant. 2014;14(6):1290–9. https://doi.org/10.1111/ajt.12678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Espie P, He Y, Koo P, Sickert D, Dupuy C, Chokote E, et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am J Transplant. 2020;20(2):463–73. https://doi.org/10.1111/ajt.15661.

    Article  CAS  PubMed  Google Scholar 

  16. Harland RC, Klintmalm G, Jensik S, Yang H, Bromberg J, Holman J, et al. Efficacy and safety of bleselumab in kidney transplant recipients: a phase 2, randomized, open-label, noninferiority study. Am J Transplant. 2020;20(1):159–71. https://doi.org/10.1111/ajt.15591.

    Article  CAS  PubMed  Google Scholar 

  17. Freitas AM, Samy KP, Farris AB, Leopardi FV, Song M, Stempora L, et al. Studies introducing costimulation blockade for vascularized composite allografts in nonhuman primates. Am J Transplant. 2015;15(8):2240–9. https://doi.org/10.1111/ajt.13379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Al-Adra DP, Anderson CC. Mixed chimerism and split tolerance: mechanisms and clinical correlations. Chimerism. 2011;2(4):89–101. https://doi.org/10.4161/chim.2.4.19017.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Leonard DA, Kurtz JM, Mallard C, Albritton A, Duran-Struuck R, Farkash EA, et al. Vascularized composite allograft tolerance across MHC barriers in a large animal model. Am J Transplant. 2014;14(2):343–55. https://doi.org/10.1111/ajt.12560This publication demonstrates tolerance across MHC mismatched donor recipient pairs by inducing stable hematopoietic mixed chimerism in a clinically relevant VCA model. As such it is a proof of concept for long term tolerance without the need for chronic immunosuppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hettiaratchy S, Melendy E, Randolph MA, Coburn RC, Neville DM Jr, Sachs DH, et al. Tolerance to composite tissue allografts across a major histocompatibility barrier in miniature swine. Transplantation. 2004;77(4):514–21. https://doi.org/10.1097/01.tp.0000113806.52063.42.

    Article  PubMed  Google Scholar 

  21. Horner BM, Randolph MA, Duran-Struuck R, Hirsh EL, Ferguson KK, Teague AG, et al. Induction of tolerance to an allogeneic skin flap transplant in a preclinical large animal model. Transplant Proc. 2009;41(2):539–41. https://doi.org/10.1016/j.transproceed.2009.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. •• Chang J, Graves SS, Butts-Miwongtum T, Sale GE, Storb R, Mathes DW. Long-term tolerance toward haploidentical vascularized composite allograft transplantation in a canine model using bone marrow or mobilized stem cells. Transplantation. 2016;100(12):e120–e7. https://doi.org/10.1097/tp.0000000000001496This publicatoin demonstrates that transplantation of mobilized stem cells at the time of haploidentical VCA can reliably induce tolerance, even if the engraftment is transient. mobilized stem cells transplant, however came with a higher risk of GVHD, a phenomena that still needs to be addressed in large animal studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oura T, Hotta K, Cosimi AB, Kawai T. Transient mixed chimerism for allograft tolerance. Chimerism. 2015;6(1–2):21–6. https://doi.org/10.1080/19381956.2015.1111975.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hotta K, Aoyama A, Oura T, Yamada Y, Tonsho M, Huh KH, et al. Induced regulatory T cells in allograft tolerance via transient mixed chimerism. JCI Insight. 2016;1(10). https://doi.org/10.1172/jci.insight.86419.

  25. Horner BM, Randolph MA, Huang CA, Butler PE. Skin tolerance: in search of the holy grail. Transpl Int. 2008;21(2):101–12. https://doi.org/10.1111/j.1432-2277.2007.00559.x.

    Article  PubMed  Google Scholar 

  26. Cina RA, Wikiel KJ, Lee PW, Cameron AM, Hettiarachy S, Rowland H, et al. Stable multilineage chimerism without graft versus host disease following nonmyeloablative haploidentical hematopoietic cell transplantation. Transplantation. 2006;81(12):1677–85. https://doi.org/10.1097/01.tp.0000226061.59196.84.

    Article  PubMed  Google Scholar 

  27. Swearingen BJGS, Storb R, Mathes DW. Abstract 47: AMD3100 (Plerixafor) as a single-dose stem cell mobilizing agent in vascularized composite tissue allograft (VCA) transplantation in a canine DLA-mismatch model. Plast Reconstr Surg Glob Open. 2019;7:34.

    Article  Google Scholar 

  28. Chandran S, Feng S. Current status of tolerance in kidney transplantation. Curr Opin Nephrol Hypertens. 2016;25(6):591–601. https://doi.org/10.1097/mnh.0000000000000269.

    Article  CAS  PubMed  Google Scholar 

  29. Sbano P, Cuccia A, Mazzanti B, Urbani S, Giusti B, Lapini I, et al. Use of donor bone marrow mesenchymal stem cells for treatment of skin allograft rejection in a preclinical rat model. Arch Dermatol Res. 2008;300(3):115–24. https://doi.org/10.1007/s00403-007-0827-9.

    Article  PubMed  Google Scholar 

  30. Kuo YR, Goto S, Shih HS, Wang FS, Lin CC, Wang CT, et al. Mesenchymal stem cells prolong composite tissue allotransplant survival in a swine model. Transplantation. 2009;87(12):1769–77. https://doi.org/10.1097/TP.0b013e3181a664f1.

    Article  PubMed  Google Scholar 

  31. Kuo YR, Chen CC, Shih HS, Goto S, Huang CW, Wang CT, et al. Prolongation of composite tissue allotransplant survival by treatment with bone marrow mesenchymal stem cells is correlated with T-cell regulation in a swine hind-limb model. Plast Reconstr Surg. 2011;127(2):569–79. https://doi.org/10.1097/PRS.0b013e318200a92c.

    Article  CAS  PubMed  Google Scholar 

  32. Kuo YR, Chen CC, Chen YC, Chien CM. Recipient adipose-derived stem cells enhance recipient cell engraftment and prolong allotransplant survival in a miniature swine hind-limb model. Cell Transplant. 2017;26(8):1418–27. https://doi.org/10.1177/0963689717724534.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eljaafari A, Badet L, Kanitakis J, Ferrand C, Farre A, Petruzzo P, et al. Isolation of regulatory T cells in the skin of a human hand-allograft, up to six years posttransplantation. Transplantation. 2006;82(12):1764–8. https://doi.org/10.1097/01.tp.0000250937.46187.ca.

    Article  CAS  PubMed  Google Scholar 

  34. Mathes DW, Hwang B, Graves SS, Edwards J, Chang J, Storer BE, et al. Tolerance to vascularized composite allografts in canine mixed hematopoietic chimeras. Transplantation. 2011;92(12):1301–8. https://doi.org/10.1097/TP.0b013e318237d6d4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Issa F, Wood KJ. The potential role for regulatory T-cell therapy in vascularized composite allograft transplantation. Curr Opin Organ Transplant. 2014;19(6):558–65. https://doi.org/10.1097/mot.0000000000000139.

    Article  CAS  PubMed  Google Scholar 

  36. Vagesjo E, Christoffersson G, Walden TB, Carlsson PO, Essand M, Korsgren O, et al. Immunological shielding by induced recruitment of regulatory T-lymphocytes delays rejection of islets transplanted in muscle. Cell Transplant. 2015;24(2):263–76. https://doi.org/10.3727/096368914x678535.

    Article  PubMed  Google Scholar 

  37. Montane J, Obach M, Alvarez S, Bischoff L, Dai DL, Soukhatcheva G, et al. CCL22 prevents rejection of mouse islet allografts and induces donor-specific tolerance. Cell Transplant. 2015;24(10):2143–54. https://doi.org/10.3727/096368914x685249.

    Article  PubMed  Google Scholar 

  38. Fisher JD, Balmert SC, Zhang W, Schweizer R, Schnider JT, Komatsu C, et al. Treg-inducing microparticles promote donor-specific tolerance in experimental vascularized composite allotransplantation. Proc Natl Acad Sci U S A. 2019;116(51):25784–9. https://doi.org/10.1073/pnas.1910701116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kueckelhaus M, Fischer S, Seyda M, Bueno EM, Aycart MA, Alhefzi M, et al. Vascularized composite allotransplantation: current standards and novel approaches to prevent acute rejection and chronic allograft deterioration. Transpl Int. 2016;29(6):655–62. https://doi.org/10.1111/tri.12652.

    Article  PubMed  Google Scholar 

  40. Burlage LC, Tessier SN, Etra JW, Uygun K, Brandacher G. Advances in machine perfusion, organ preservation, and cryobiology: potential impact on vascularized composite allotransplantation. Curr Opin Organ Transplant. 2018;23(5):561–7. https://doi.org/10.1097/mot.0000000000000567.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Choi SW, Reddy P. Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol. 2014;11(9):536–47. https://doi.org/10.1038/nrclinonc.2014.102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nash RA, Antin JH, Karanes C, Fay JW, Avalos BR, Yeager AM, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood. 2000;96(6):2062–8.

    CAS  PubMed  Google Scholar 

  43. Hale G, Cobbold S, Waldmann H. T cell depletion with CAMPATH-1 in allogeneic bone marrow transplantation. Transplantation. 1988;45(4):753–9. https://doi.org/10.1097/00007890-198804000-00018.

    Article  CAS  PubMed  Google Scholar 

  44. Manohar S, Thongprayoon C, Cheungpasitporn W, Markovic SN, Herrmann SM. Systematic review of the safety of immune checkpoint inhibitors among kidney transplant patients. Kidney Int Rep. 2020;5(2):149–58. https://doi.org/10.1016/j.ekir.2019.11.015.

    Article  PubMed  Google Scholar 

  45. Kwak HHWH, Park KM. The degree of major histocompatibility complex matching between purebred Maltese and mongrel dogs using microsatellite markers. J Vet Sci. 2019;20(2):e5.

    Article  Google Scholar 

  46. Brandacher G, Grahammer J, Sucher R, Lee WP. Animal models for basic and translational research in reconstructive transplantation. Birth Defects Res C Embryo Today. 2012;96(1):39–50. https://doi.org/10.1002/bdrc.21002.

    Article  CAS  PubMed  Google Scholar 

  47. Graves SS, Mathes DW, Georges GE, Kuhr CS, Chang J, Butts TM, et al. Long-term tolerance to kidney allografts after induced rejection of donor hematopoietic chimerism in a preclinical canine model. Transplantation. 2012;94(6):562–8. https://doi.org/10.1097/TP.0b013e3182646bf1.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Premasathian N, Avihingsanon Y, Ingsathit A, Pongskul C, Jittiganont S, Sumethkul V. Risk factors and outcome of delayed graft function after cadaveric kidney transplantation: a report from the Thai transplant registry. Transplant Proc. 2010;42(10):4017–20. https://doi.org/10.1016/j.transproceed.2010.10.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Ariel C. Johnson. Formal material analysis and investigation were performed by Christene A. Huang and David W. Mathes. The first draft of the manuscript was written by Ariel C. Johnson, and reviewing and editing were completed by Christene A. Huang and David W. Mathes. All authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to David W. Mathes.

Ethics declarations

Conflict of Interest

None of the authors have a financial interest in any of the products, devices or drugs mentioned in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Vascularized Composite Allografts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, A.C., Huang, C.A. & Mathes, D.W. Tolerance Protocols in Large Animal VCA Models—Comprehensive Review. Curr Transpl Rep 7, 270–278 (2020). https://doi.org/10.1007/s40472-020-00302-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-020-00302-1

Keywords

Navigation