Skip to main content

Advertisement

Log in

Does Delayed Graft Function Still Herald a Poorer Outcome in Kidney Transplantation?

  • Kidney Transplantation (M Henry, Section Editor)
  • Published:
Current Transplantation Reports Aims and scope Submit manuscript

Abstract

Delayed graft function (DGF), or post-operative acute kidney injury leading to the need for dialysis within the first week after kidney transplantation, most commonly occurs in the setting of donor kidney recovery and the ischemia–reperfusion injury associated with the transplantation process. Despite advances in immunosuppressive regimens and medical management of kidney transplant recipients, the short- and long-term sequelae of DGF continue to be important determinants of kidney allograft prognosis. In this review, we will highlight the following areas as it relates to DGF: definition, pathophysiology, epidemiology, graft and patient outcomes, prediction, and some points on management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wolfe RAAV, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, Held PJ, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. New England Journal of Medicine. 1999;341(23):1725–30.

    Article  CAS  PubMed  Google Scholar 

  2. Perico N et al. Delayed graft function in kidney transplantation. Lancet. 2004;364(9447):1814–27.

    Article  PubMed  Google Scholar 

  3. Yarlagadda SG et al. Marked variation in the definition and diagnosis of delayed graft function: a systematic review. Nephrol Dial Transplant. 2008;23(9):2995–3003.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Akkina SKCJ, Israni AK, et al. Similar outcomes with different rates of delayed graft function may reflect center practice, not center performance. Am J Transplant. 2009;9(6):1460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Potluri VS et al. Validating early post–transplant outcomes reported for recipients of deceased donor kidney transplants. Clinical Journal of the American Society of Nephrology. 2016;11(2):324–31.

    Article  PubMed  Google Scholar 

  6. Mallon DH et al. Defining delayed graft function after renal transplantation: simplest is best. Transplantation. 2013;96(10):885–9. This study validates and describes the clinical relevance of the current definition of DGF.

  7. Kosieradzki MRW. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proceedings. 2008;2008(40):10.

    Google Scholar 

  8. DA Shoskes HP. Delayed graft function in renal transplantation: etiology, management and long-term significance. J Urol. 1996;155(6):1831–40.

    Article  CAS  PubMed  Google Scholar 

  9. Siedlecki AIW, Brennan DC. Delayed graft function in the kidney transplant. Am J Transplant. 2011;11(11):2279–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu CYPJ, Kielar ML, et al. Hypothesis: is renal allograft rejection initiated by the response to injury sustained during the transplant process? Kidney International. 1999;55(6):2157–68.

    Article  CAS  PubMed  Google Scholar 

  11. DA Shoskes CJ. Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation. 1998;66(12):1697–701.

    Article  CAS  PubMed  Google Scholar 

  12. Brennan TVFC, Fuller TF, Bostrom A, Tomlanovich SJ, Feng S. Early graft function after living donor kidney transplantation predicts rejection but not outcomes. Am J Transplant. 2004;4(6):971–9.

    Article  PubMed  Google Scholar 

  13. Decuypere J-P et al. Autophagy and the kidney: implications for ischemia-reperfusion injury and therapy. American Journal of Kidney Diseases. 2015;66(4):699–709. This review provides a thorough description of the pathophysiology of ischemia-reperfusion injury.

  14. Kwon OJ et al. The impact of delayed graft function on graft survival in living donor kidney transplantation. Transplant Proceedings. 2003;35(1):92–3.

    Article  CAS  Google Scholar 

  15. Matas AJ et al. OPTN/SRTR 2012 annual data report: kidney. American Journal of Transplantation. 2014;14(S1):11–44.

    Article  PubMed  Google Scholar 

  16. Rojas-Pena A et al. Extracorporeal support: improves donor renal graft function after cardiac death. Am J Transplant. 2010;10(6):1365–74.

    Article  CAS  PubMed  Google Scholar 

  17. Snoeijs MGJ et al. Kidney transplantation from donors after cardiac death: a 25-year experience. Transplantation. 2010;90(10):1106–12.

    Article  PubMed  Google Scholar 

  18. Nijboer WN et al. Effect of brain death on gene expression and tissue activation in human donor kidneys. Transplantation. 2004;78(7):978–86.

    Article  PubMed  Google Scholar 

  19. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Critical Care Medicine. 2009;37(7):S186–202.

    Article  PubMed  Google Scholar 

  20. Pratschke JTS, Neuhaus P. Brain death associated ischemia/reperfusion injury. Annals of Transplant. 2004;2004(9):1.

    Google Scholar 

  21. Gill J et al. Pulsatile perfusion reduces the risk of delayed graft function in deceased donor kidney transplants, irrespective of donor type and cold ischemic time. Transplantation. 2014;97(6):668–74.

    PubMed  Google Scholar 

  22. O’Callaghan JMKS, Morgan RD, Morris PJ. Preservation solutions for static cold storage of kidney allografts: a systematic review and meta-analysis. Am J Transplant. 2012;12(4):896–906.

    Article  PubMed  Google Scholar 

  23. Kayler LKMJ, Zendejas I, et al. Impact of cold ischemia time on graft survival among ECD transplant recipients: a paired kidney analysis. Am J Transplant. 2011;11(12):2647–56.

    Article  CAS  PubMed  Google Scholar 

  24. Ojo AO et al. Delayed graft function: risk factors and implications for renal allograft survival. Transplantation. 1997;63(7):968–74.

    Article  CAS  PubMed  Google Scholar 

  25. Summers DM et al. Effect of donor age and cold storage time on outcome in recipients of kidneys donated after circulatory death in the UK: a cohort study. Lancet. 2013;381(9868):727–34.

    Article  PubMed  Google Scholar 

  26. Hill CJ et al. Recipient obesity and outcomes after kidney transplantation: a systematic review and meta-analysis. Nephrology Dialysis Transplantation. 2015;30(8):1403–11. This study provides an in-depth review of the obesity as a risk factor for DGF.

  27. Shoskes DA et al. HLA matching determines susceptibility to harmful effects of delayed graft function in renal transplant recipients. Transplant Proceedings. 1995;27(1):1068–9.

    CAS  Google Scholar 

  28. Doshi MD et al. Recipient risk factors associated with delayed graft function: a paired kidney analysis. Transplantation. 2011;91(6):666–71.

    Article  PubMed  Google Scholar 

  29. Bahde R et al. Prognostic factors for kidney allograft survival in the Eurotransplant Senior Program. Medical Science Monitor Basic Research. 2014;19:201–9.

    Google Scholar 

  30. Chang SHCP, McDonald SP. Effects of body mass index at transplant on outcomes of kidney transplantation. Transplantation. 2007;84(8):981–7.

    Article  PubMed  Google Scholar 

  31. Gore JL et al. Obesity and outcome following renal transplantation. Am J Transplant. 2006;6(2):357–63.

    Article  CAS  PubMed  Google Scholar 

  32. Weissenbacher A et al. Recipient and donor body mass index as important risk factors for delayed kidney graft function. Transplantation. 2012;93(5):524–9.

    Article  PubMed  Google Scholar 

  33. Khwaja AE-NM. Transplantation in the obese: separating myth from reality. Nephrol Dial Transplant. 2012;27(10):3732–5.

    Article  PubMed  Google Scholar 

  34. Molnar MZ et al. Dialysis modality and outcomes in kidney transplant recipients. Clinical Journal of the American Society of Nephrology. 2012;7(2):332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Loo AA et al. Pretransplantation hemodialysis strategy influences early renal graft function. Journal of the American Society of Nephrology. 1998;9(3):473–81.

    PubMed  Google Scholar 

  36. Buchanan PM et al. Association of lower costs of pulsatile machine perfusion in renal transplantation from expanded criteria donors. Am J Transplant. 2008;8(11):2391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jochmans I et al. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Annals of Surgery. 2010;252(5):756–64.

    Article  PubMed  Google Scholar 

  38. Moers C et al. Machine perfusion or cold storage in deceased donor kidney transplantation. New England Journal of Medicine. 2009;360(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  39. Treckmann J et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transplant International. 2011;24(6):548–54.

    Article  PubMed  Google Scholar 

  40. Liu Y et al. Basiliximab or antithymocyte globulin for induction therapy in kidney transplantation: a meta-analysis. Transplant Proceedings. 2010;42(5):1667–70.

    Article  CAS  Google Scholar 

  41. Noel C et al. Daclizumab versus antithymocyte globulin in high-immunological-risk renal transplant recipients. Journal of the American Society of Nephrology. 2009;20(6):1385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Watson CJE et al. Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: a UK multicenter randomized controlled trial. Am J Transplant. 2010;10(9):1991–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wu WK et al. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney International. 2015;88(4):851–8.

    Article  CAS  PubMed  Google Scholar 

  44. Nagaraja PRG, Stephens M, et al. Influence of delayed graft function and acute rejection on outcomes after kidney transplantation from donors after cardiac death. Transplantation. 2012;94(12):1218–23.

    Article  PubMed  Google Scholar 

  45. Yarlagadda SG et al. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):1039–47.

    Article  PubMed  Google Scholar 

  46. Lubetzky M et al. Early readmission after kidney transplantation: examination of discharge-level factors. Transplantation. 2016.

  47. McAdams-DeMarco MA, Grams ME, King E, Desai NM, Segev DL. Sequelae of early hospital readmission after kidney transplantation. Am J Transplant. 2014;14(2):397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yokoyama I et al. Effect of prolonged delayed graft function on long-term graft outcome in cadaveric kidney transplantation. Clinical Transplantation. 1994;8(2):101–6.

    CAS  PubMed  Google Scholar 

  49. Butala NM et al. Is delayed graft function causally associated with long-term outcomes after kidney transplantation? Instrumental variable analysis. Transplantation. 2013;95(8):1008. This study provides a thorough analysis of the association between DGF and long term outcomes to both graft and patient.

  50. Hariharan S et al. Post-transplant renal function in the first year predicts long-term kidney transplant survival. Kidney International. 2002;62(1):311–8.

    Article  PubMed  Google Scholar 

  51. Woo YM et al. Early graft function and patient survival following cadaveric renal transplantation. Kidney International. 1999;55(2):692–9.

    Article  CAS  PubMed  Google Scholar 

  52. Hirata MCY, Cecka JM, Terasaki PI. Patient death after renal transplantation: an analysis of its role in graft outcome. Transplantation. 1996;61(10):1479–83.

    Article  CAS  PubMed  Google Scholar 

  53. Ojo AO et al. Long-term survival in renal transplant recipients with graft function. Kidney International. 2000;57(1):307–13.

    Article  CAS  PubMed  Google Scholar 

  54. West MSD, Matas AJ. Kidney transplant recipients who die with functioning grafts: serum creatinine level and cause of death. Transplantation. 1996;62(7):1029–30.

    Article  CAS  PubMed  Google Scholar 

  55. Tapiawala SN et al. Delayed graft function and the risk for death with a functioning graft. Journal of the American Society of Nephrology. 2010;21(1):153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grams MERH. The distant organ effects of acute kidney injury. Kidney International. 2012;81(10):942–8.

    Article  PubMed  Google Scholar 

  57. Almond PS et al. Economic impact of delayed graft function. Transplant Proceedings. 1991;23(1 part 2):1304.

    CAS  Google Scholar 

  58. Rosenthal JT et al. The high cost of delayed graft function in cadaveric renal transplantation. Transplantation. 1991;51(5):1115–8.

    Article  CAS  PubMed  Google Scholar 

  59. Irish WD et al. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am J Transplant. 2010;10(10):2279–86.

    Article  CAS  PubMed  Google Scholar 

  60. Marek C et al. The prognostic value of time needed on dialysis in patients with delayed graft function. Nephrol Dial Transplant. 2014;29(1):203–8.

    Article  CAS  PubMed  Google Scholar 

  61. Lopes JAMF, Rierra L, et al. Evaluation of preimplantation kidney biopsies: comparison of Banff criteria to a morphometric approach. Kidney International. 2005;67(4):1595–600.

    Article  PubMed  Google Scholar 

  62. Snoeijs MGJ et al. Histological assessment of preimplantation biopsies may improve selection of kidneys from old donors after cardiac death. Am J Transplant. 2008;8(9):1844–51.

    Article  CAS  PubMed  Google Scholar 

  63. Hall IEYS, Coca SG, et al. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. Journal of the American Society of Nephrology. 2010;21(1):189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hollmen ME et al. Urine neutrophil gelatinase-associated lipocalin is a marker of graft recovery after kidney transplantation. Kidney International. 2011;79(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  65. Parikh CRJA, Mishra J, et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant. 2006;6(7):1639–45.

    Article  CAS  PubMed  Google Scholar 

  66. Hall IE et al. Association between peritransplant kidney injury biomarkers and 1-year allograft outcomes. Clinical Journal of the American Society of Nephrology. 2012;7(8):1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moers C et al. The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation. 2010;90(9):966–73.

    Article  PubMed  Google Scholar 

  68. Avihingsanon Y et al. On the intraoperative molecular status of renal allografts after vascular reperfusion and clinical outcomes. Journal of the American Society of Nephrology. 2005;16(6):1542–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pianta TJ et al. Clusterin in kidney transplantation: novel biomarkers versus serum creatinine for early prediction of delayed graft function. Transplantation. 2015;99(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  70. Niemann CU et al. Therapeutic hypothermia in deceased organ donors and kidney-graft function. New England Journal of Medicine. 2015;373(5):405–14. This study tested donor cooling as a novel mechanism for the prevention of DGF in a randomized controlled trial.

  71. Wu J et al. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial. Journal of Surgical Research. 2014;1888(1):303–8.

    Article  Google Scholar 

  72. MacAllister R et al. REmote preconditioning for Protection Against Ischaemia–Reperfusion in renal transplantation (REPAIR): a multicentre, multinational, double-blind, factorial designed randomised controlled trial. Efficacy and Mechanism Evaluation. 2015.

  73. Mahboub P et al. Gradual rewarming with gradual increase in pressure during machine perfusion after cold static preservation reduces kidney ischemia reperfusion injury. PloS one. 2015;10(12):e0143859.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fuller TF et al. Protein kinase C inhibition ameliorates posttransplantation preservation injury in rat renal transplants. Transplantation. 2012;94(7):679–86.

    Article  CAS  PubMed  Google Scholar 

  75. Gueler F et al. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice. PloS one. 2015;10(1):e0115709.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Parajuli N, et al. MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys. 2012. 2012;7(11):e48590

  77. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9 Suppl 3:S1–155.

    Google Scholar 

  78. Lieberthal W et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. American Journal of Physiology-Renal Physiology. 2001;281(4):F693–706.

    CAS  PubMed  Google Scholar 

  79. Loverre A et al. Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. Journal of the American Society of Nephrology. 2004;15(10):2675–86.

    Article  CAS  PubMed  Google Scholar 

  80. Guba M et al. Early conversion to a sirolimus‐based, calcineurin‐inhibitor‐free immunosuppression in the SMART trial: observational results at 24 and 36 months after transplantation. Transplant International. 2012;25(4):416–23.

    Article  CAS  PubMed  Google Scholar 

  81. Lebranchu Y et al. Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: concept study. American Journal of Transplantation. 2009;9(5):1115–23.

    Article  CAS  PubMed  Google Scholar 

  82. Munivenkatappa R et al. Tubular epithelial cell and podocyte apoptosis with de novo sirolimus based immunosuppression in renal allograft recipients with DGF. Histology and Histopathology. 2010;25:189–96.

    CAS  PubMed  Google Scholar 

  83. Stallone G et al. Addition of sirolimus to cyclosporine delays the recovery from delayed graft function but does not affect 1-year graft function. Journal of the American Society of Nephrology. 2004;15(1):228–33.

    Article  CAS  PubMed  Google Scholar 

  84. Tahir W et al. Early sirolimus conversion as rescue therapy in kidneys with prolonged delayed graft function in deceased donor renal transplant, Transplantation proceedings, vol. 47. 2015. No. 6. Elsevier.

    Google Scholar 

  85. Simon JF et al. Induction sirolimus and delayed graft function after deceased donor kidney transplantation in the United States. American journal of nephrology. 2004;24(4):393–401.

    Article  CAS  PubMed  Google Scholar 

  86. McTaggart RA et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. American Journal of Transplantation. 2003;3(4):416–23.

    Article  CAS  PubMed  Google Scholar 

  87. McTaggart RA et al. Comparison of outcomes after delayed graft function: sirolimus-based versus other calcineurin-inhibitor sparing induction immunosuppression regimens. Transplantation. 2004;78(3):475–80.

    Article  CAS  PubMed  Google Scholar 

  88. Beiras-Fernandez A et al. Impact of polyclonal anti-thymocyte globulins on the expression of adhesion and inflammation molecules after ischemia–reperfusion injury. Transplant immunology. 2009;20(4):224–8.

    Article  CAS  PubMed  Google Scholar 

  89. Goggins WC et al. A prospective, randomized, clinical trial of intraoperative versus postoperative thymoglobulin in adult cadaveric renal transplant recipients. Transplantation. 2003;76(5):798–802.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Joseph Kim.

Ethics declarations

Conflict of Interest

Emilie Chan and Joseph Kim declare that they have no conflict of interest as related to this report.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

This article is part of the Topical Collection on Kidney Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, E., Kim, S.J. Does Delayed Graft Function Still Herald a Poorer Outcome in Kidney Transplantation?. Curr Transpl Rep 3, 236–243 (2016). https://doi.org/10.1007/s40472-016-0110-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40472-016-0110-0

Keywords

Navigation