Current Transplantation Reports

, Volume 3, Issue 1, pp 82–92 | Cite as

A Role for 3D Printing in Kidney-on-a-Chip Platforms

  • Ryan D. Sochol
  • Navin R. Gupta
  • Joseph V. Bonventre
Tissue Engineering and Regeneration (JA Wertheim, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Tissue Engineering and Regeneration

Abstract

The advancement of “kidney-on-a-chip” platforms—submillimeter-scale fluidic systems designed to recapitulate renal functions in vitro—directly impacts a wide range of biomedical fields, including drug screening, cell and tissue engineering, toxicity testing, and disease modeling. To fabricate kidney-on-a-chip technologies, researchers have primarily adapted traditional micromachining techniques that are rooted in the integrated circuit industry; hence the term “chip.” A significant challenge, however, is that such methods are inherently monolithic, which limits one’s ability to accurately recreate the geometric and architectural complexity of the kidney in vivo. Better reproduction of the anatomical complexity of the kidney will allow for more instructive modeling of physiological and pathophysiological events. Emerging additive manufacturing or “three-dimensional (3D) printing” techniques could provide a promising alternative to conventional methodologies. In this article, we discuss recent progress in the development of both kidney-on-a-chip platforms and state-of-the-art submillimeter-scale 3D printing methods, with a focus on biophysical and architectural capabilities. Lastly, we examine the potential for 3D printing-based approaches to extend the efficacy of kidney-on-a-chip systems.

Keywords

3D Printing Kidney-on-a-chip Organ-on-a-chip Bioartificial kidney Additive manufacturing Microfluidics 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ryan D. Sochol, Navin R. Gupta, and Joseph V. Bonventre declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Marx V. Tissue engineering: organs from the lab. Nature. 2015;522(7556):373–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov. 2015;14(4):248–60.CrossRefPubMedGoogle Scholar
  4. 4.
    Caplin JD, Granados NG, James MR, Montazami R, Hashemi N. Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv Healthcare Mater. 2015;4(10):1426–50.CrossRefGoogle Scholar
  5. 5.
    Huh D, Torisawa Y-s, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. Lab Chip. 2012;12(12):2156–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Eisenstein M. Artificial organs: honey, I shrunk the lungs. Nature. 2015;519(7544):S16–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Fitzgerald KA, Malhotra M, Curtin CM, O’ Brien FJ, O’ Driscoll CM. Life in 3D is never flat: 3D models to optimise drug delivery. J Control Release. 2015;215:39–54.CrossRefPubMedGoogle Scholar
  8. 8.
    Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.CrossRefPubMedGoogle Scholar
  9. 9.
    Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Sochol RD, Casavant BP, Dueck ME, Lee LP, Lin L. A dynamic bead-based microarray for parallel DNA detection. J Micromech Microeng. 2011;21(5):054019.CrossRefGoogle Scholar
  11. 11.
    Tan WH, Takeuchi S. A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A. 2007;104(4):1146–51.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sochol RD, Lu A, Lei J, Iwai K, Lee LP, Lin L. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications. Lab Chip. 2014;14(9):1585–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Tan WH, Takeuchi S. Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads. Lab Chip. 2008;8(2):259–66.CrossRefPubMedGoogle Scholar
  14. 14.
    Sochol RD, Li S, Lee LP, Lin L. Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing. Lab Chip. 2012;12:4168–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuribayashi-Shigetomi K, Onoe H, Takeuchi S. Cell Origami. Self-folding of three-dimensional cell-laden microstructures driven by cell traction force. Plos One. 2012;7(12).Google Scholar
  16. 16.
    Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A. 2003;100(4):1484–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sochol RD, Higa AT, Janairo RRR, Li S, Lin L. Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter. 2011;7(10):4606–9.CrossRefGoogle Scholar
  18. 18.
    Sochol RD, Higa AT, Janairo RRR, Li S, Lin L. Effects of micropost spacing and stiffness on cell motility. Micro Nano Lett. 2011;6(5):323–6.CrossRefGoogle Scholar
  19. 19.
    Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Aumiller GD, Chandross EA, Tomlinson WJ, Weber HP. Submicrometer resolution replication of relief patterns for integrated optics. J Appl Phys. 1974;45(10):4557–62.CrossRefGoogle Scholar
  21. 21.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70(23):4974–84.CrossRefPubMedGoogle Scholar
  22. 22.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). ELECTROPHORESIS. 2000;21(1):27–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Sochol RD, Dueck ME, Li S, Lee LP, Lin L. Hydrodynamic resettability for a microparticle arraying system. Lab Chip. 2012;12:5051–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Sochol RD, Corbett D, Hesse S, Krieger WER, Wolf KT, Kim M, et al. Dual-mode hydrodynamic railing and arraying of microparticles for multi-stage signal detection in continuous flow biochemical microprocessors. Lab Chip. 2014;14(8):1405–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Anderson JR, Chiu DT, Jackman RJ, Cherniavskaya O, McDonald JC, Wu H, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem. 2000;72(14):3158–64.CrossRefPubMedGoogle Scholar
  26. 26.
    Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000;288(5463):113–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Ismagilov RF, Ng JMK, Kenis PJA, Whitesides GM. Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools. Anal Chem. 2001;73(21):5207–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Allen JW, Bhatia SN. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol Bioeng. 2003;82(3):253–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog. 2004;20(2):590–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Kane BJ, Zinner MJ, Yarmush ML, Toner M. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem. 2006;78(13):4291–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng. 2007;97(5):1340–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, et al. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices. 2008;10(6):795–805.CrossRefPubMedGoogle Scholar
  33. 33.
    Huh D, Fujioka H, Tung Y-C, Futai N, Paine R, Grotberg JB, et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci. 2007;104(48):18886–91.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, et al. A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4(159):159ra47.CrossRefGoogle Scholar
  36. 36.
    Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, et al. Microfabrication of human organs-on-chips. Nat Protoc. 2013;8(11):2135–57.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–74.CrossRefPubMedGoogle Scholar
  38. 38.
    Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb). 2013;5(9):1130–40.CrossRefGoogle Scholar
  39. 39.
    Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier ([small mu]BBB). Lab Chip. 2012;12(10):1784–92.CrossRefPubMedGoogle Scholar
  40. 40.
    Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices. 2013;15(1):145–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Achyuta AKH, Conway AJ, Crouse RB, Bannister EC, Lee RN, Katnik CP, et al. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip. 2013;13(4):542–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Torisawa Y-s, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, et al. Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11(6):663–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010;10(1):36–42.CrossRefPubMedGoogle Scholar
  44. 44.
    Jang KJ, Cho HS, Kang do H, Bae WG, Kwon TH, Suh KY. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol (Camb). 2011;3(2):134–41.CrossRefGoogle Scholar
  45. 45.••
    Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5(9):1119–29. This study utilizes a multilayer microfluidic system—comprised of two chambers separated by a thin, permeable membrane—to model functions of the proximal tubule for drug toxicity testing.CrossRefGoogle Scholar
  46. 46.
    Sciancalepore AG, Sallustio F, Girardo S, Gioia Passione L, Camposeo A, Mele E, et al. A bioartificial renal tubule device embedding human renal stem/progenitor cells. PLoS One. 2014;9(1):e87496.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Frohlich EM, Alonso JL, Borenstein JT, Zhang X, Arnaout MA, Charest JL. Topographically-patterned porous membranes in a microfluidic device as an in vitro model of renal reabsorptive barriers. Lab Chip. 2013;13(12):2311–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ferrell N, Desai RR, Fleischman AJ, Roy S, Humes HD, Fissell WH. A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells. Biotechnol Bioeng. 2010;107(4):707–16.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 2000;32(1):56–67.CrossRefPubMedGoogle Scholar
  50. 50.
    Greek R, Menache A. Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci. 2013;10(3):206–21.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9(3):237–52.CrossRefPubMedGoogle Scholar
  52. 52.
    Su R, Li Y, Zink D, Loo LH. Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels. BMC Bioinformatics. 2014;15(16):S16.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, et al. Engineered in vitro disease models. Annu Rev Pathol. 2015;10:195–262.CrossRefPubMedGoogle Scholar
  54. 54.
    Lam AQ, Freedman BS, Bonventre JV. Directed differentiation of pluripotent stem cells to kidney cells. Semin Nephrol. 2014;34(4):445–61.CrossRefPubMedGoogle Scholar
  55. 55.
    Desrochers TM, Palma E, Kaplan DL. Tissue-engineered kidney disease models. Adv Drug Deliv Rev. 2014;69-70:67–80.CrossRefPubMedGoogle Scholar
  56. 56.
    Huang HC, Chang YJ, Chen WC, Harn HI, Tang MJ, Wu CC. Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng Part A. 2013;19(17-18):2024–34.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhou M, Ma H, Lin H, Qin J. Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials. 2014;35(5):1390–401.CrossRefPubMedGoogle Scholar
  58. 58.
    Frohlich EM, Zhang X, Charest JL. The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function. Integr Biol (Camb). 2012;4(1):75–83.CrossRefGoogle Scholar
  59. 59.
    Wunsch S, Gekle M, Kersting U, Schuricht B, Oberleithner H. Phenotypically and karyotypically distinct Madin-Darby canine kidney cell clones respond differently to alkaline stress. J Cell Physiol. 1995;164(1):164–71.CrossRefPubMedGoogle Scholar
  60. 60.
    Rose B, Post T. Introduction to renal function. Clinical physiology of acid-base and electrolyte disorders. New York: McGraw-Hill; 2001.Google Scholar
  61. 61.
    Abate AR, Lee D, Do T, Holtze C, Weitz DA. Glass coating for PDMS microfluidic channels by sol-gel methods. Lab Chip. 2008;8(4):516–8.CrossRefPubMedGoogle Scholar
  62. 62.•
    Wei Z, Amponsah PK, Al-Shatti M, Nie Z, Bandyopadhyay BC. Engineering of polarized tubular structures in a microfluidic device to study calcium phosphate stone formation. Lab Chip. 2012;12(20):4037–40. This work adapts conventional soft lithography methods (which produce rectangular microfluidic channels) to fabricate cylindrical microfluidic channels for investigating renal functions.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.•
    Oo ZY, Deng R, Hu M, Ni M, Kandasamy K, bin Ibrahim MS et al. The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials. 2011;32(34):8806-15. The work presents a hollow, cylindrical fibrin-based permeable membrane for renal applications.Google Scholar
  64. 64.
    Ng CP, Zhuang Y, Lin AWH, Teo JCM. A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study. Int J Tissue Eng. 2013;2013:10.CrossRefGoogle Scholar
  65. 65.
    Tseng P, Murray C, Kim D, Di Carlo D. Research highlights: printing the future of microfabrication. Lab Chip. 2014;14(9):1491–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip. 2014;14(19):3790–9.CrossRefPubMedGoogle Scholar
  67. 67.
    O’Neill PF, Ben Azouz A, Vázquez M, Liu J, Marczak S, Slouka Z, et al. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics. 2014;8(5):052112.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kim JY, Baek JY, Lee KA, Lee SH. Automatic aligning and bonding system of PDMS layer for the fabrication of 3D microfluidic channels. Sensors Actuators A Phys. 2005;119(2):593–8.CrossRefGoogle Scholar
  69. 69.
    Hull CW. Apparatus for production of three-dimensional objects by stereolithography. Google Patents; 1986.Google Scholar
  70. 70.
    Crump SS. Apparatus and method for creating three-dimensional objects. Google Patents; 1992.Google Scholar
  71. 71.
    Yamane M, Kawaguchi T, Kagayama S, Higashiyama S, Suzuki K, Sakai J et al. Apparatus and method for forming three-dimensional article. Google Patents; 1991.Google Scholar
  72. 72.
    Almquist TA, Smalley DR. Thermal stereolithography. Google Patents; 1997.Google Scholar
  73. 73.
    Lim TW, Son Y, Jeong YJ, Yang D-Y, Kong H-J, Lee K-S, et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip. 2011;11(1):100–3.CrossRefPubMedGoogle Scholar
  74. 74.
    He Y, Huang B-L, Lu D-X, Zhao J, Xu B-B, Zhang R, et al. “Overpass” at the junction of a crossed microchannel: an enabler for 3D microfluidic chips. Lab Chip. 2012;12(20):3866–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem. 2014;86(6):3124–30.CrossRefPubMedGoogle Scholar
  76. 76.
    Bhargava KC, Thompson B, Malmstadt N. Discrete elements for 3D microfluidics. Proc Natl Acad Sci. 2014;111(42):15013–8.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Au AK, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip. 2014;14(7):1294–301.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A. 3D-printed microfluidic automation. Lab Chip. 2015;15(8):1934–41.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Rogers CI, Qaderi K, Woolley AT, Nordin GP. 3D printed microfluidic devices with integrated valves. Biomicrofluidics. 2015;9(1):016501.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhang AP, Qu X, Soman P, Hribar KC, Lee JW, Chen S, et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater. 2012;24(31):4266–70.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Soman P, Kelber JA, Lee JW, Wright TN, Vecchio KS, Klemke RL, et al. Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials. 2012;33(29):7064–70.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hribar KC, Finlay D, Ma X, Qu X, Ondeck MG, Chung PH, et al. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab Chip. 2015;15(11):2412–8.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett. 1997;22(2):132–4.CrossRefPubMedGoogle Scholar
  84. 84.
    Klein F, Striebel T, Fischer J, Jiang Z, Franz CM, von Freymann G, et al. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater. 2010;22(8):868–71.CrossRefPubMedGoogle Scholar
  85. 85.•
    Klein F, Richter B, Striebel T, Franz CM, Freymann G, Wegener M, et al. Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater. 2011;23(11):1341–5. This study describes a two-photon DLW approach for constructing 3D cellular scaffolds comprised of distinct materials that either promote or limit cellular attachment at specified locations in 3D space.CrossRefPubMedGoogle Scholar
  86. 86.
    Scheiwe AC, Frank SC, Autenrieth TJ, Bastmeyer M, Wegener M. Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds. Biomaterials. 2015;44:186–94.CrossRefPubMedGoogle Scholar
  87. 87.
    Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, et al. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349–52.CrossRefPubMedGoogle Scholar
  88. 88.
    Therriault D, White SR, Lewis JA. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater. 2003;2(4):265–71.CrossRefPubMedGoogle Scholar
  89. 89.
    Ahn BY, Duoss EB, Motala MJ, Guo X, Park S-I, Xiong Y, et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science. 2009;323(5921):1590–3.CrossRefPubMedGoogle Scholar
  90. 90.
    Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater. 2011;23(24):H178–83.CrossRefPubMedGoogle Scholar
  91. 91.
    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–74.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338(6109):921–6.CrossRefPubMedGoogle Scholar
  93. 93.
    Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater. 2013;12(6):584–90.CrossRefPubMedGoogle Scholar
  94. 94.
    Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 2015;27(9):1607–14.CrossRefPubMedGoogle Scholar
  95. 95.
    Gao Q, He Y, Fu J-z, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203–15.CrossRefPubMedGoogle Scholar
  96. 96.••
    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30. This work combines two distinct extrusion-based 3D bioprinting approaches—sacrifical casting and direct deposition of cell-laden inks—to enable interactions between multiple cell types and microvascular networks.CrossRefPubMedGoogle Scholar
  97. 97.
    Anderson KB, Lockwood SY, Martin RS, Spence DM. A 3D printed fluidic device that enables integrated features. Anal Chem. 2013;85(12):5622–6.CrossRefPubMedGoogle Scholar
  98. 98.
    Lee KG, Park KJ, Seok S, Shin S, Kim DH, Park JY, et al. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014;4(62):32876–80.CrossRefGoogle Scholar
  99. 99.
    Walczak R, Adamski K. Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips. J Micromech Microeng. 2015;25(8):085013.CrossRefGoogle Scholar
  100. 100.
    Zhu F, Skommer J, Macdonald NP, Friedrich T, Kaslin J, Wlodkowic D. Three-dimensional printed millifluidic devices for zebrafish embryo tests. Biomicrofluidics. 2015;9(4):046502.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ryan D. Sochol
    • 1
  • Navin R. Gupta
    • 2
  • Joseph V. Bonventre
    • 2
    • 3
  1. 1.Department of Mechanical Engineering, Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA
  2. 2.Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Institutes of MedicineHarvard Medical SchoolBostonUSA
  3. 3.Harvard Stem Cell InstituteCambridgeUSA

Personalised recommendations