Skip to main content
Log in

Epidemiologic Advances Generated by the Human Health Exposure Analysis Resource Program

  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

To summarize the findings of published works supported by the Human Health Exposure Analysis Resource (HHEAR) program and provide recommendations to advance the field of environmental epidemiology.

Recent Findings

We identified 41 papers that have used HHEAR-generated laboratory results. Metals, phthalates, and phenol biomarkers were the most common biomarkers measured.

Summary

This review highlights numerous associations found between environmental exposures and a range of human health outcomes building on existing studies using HHEAR resources. The HHEAR repository has helped participating investigators expand the breadth of their research and bridge gaps in the existing literature. In the future, combining and harmonizing data in the repository will broaden the scope of the research published and improve sample size and power in these projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

De-identified datasets for HHEAR projects are available for download at https://hheardatacenter.mssm.edu for registered users after the embargo period.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Balshaw DM, Collman GW, Gray KA, Thompson CL. The children’s health exposure analysis resource: enabling research into the environmental influences on children’s health outcomes. Curr Opin Pediatr. 2017;29(3):385–9. https://doi.org/10.1097/mop.0000000000000491.

  2. Blaisdell CJ, Park C, Hanspal M, Roary M, Arteaga SS, Laessig S, et al. The NIH ECHO program: investigating how early environmental influences affect child health. Pediatr Res. 2022;92(5):1215–6. https://doi.org/10.1038/s41390-021-01574-8.

    Article  PubMed  Google Scholar 

  3. Liu T, Hivert MF, Rifas-Shiman SL, Rahman ML, Oken E, Cardenas A, et al. Prospective association between manganese in early pregnancy and the risk of preeclampsia. Epidemiology. 2020;31(5):677–80. https://doi.org/10.1097/ede.0000000000001227.

  4. Rahman ML, Oken E, Hivert MF, Rifas-Shiman S, Lin PD, Colicino E, et al. Early pregnancy exposure to metal mixture and birth outcomes - a prospective study in project viva. Environ Int. 2021;156:106714. https://doi.org/10.1016/j.envint.2021.106714.

  5. Zheng Y, Lin PD, Williams PL, Weisskopf MG, Cardenas A, Rifas-Shiman SL, et al. Early pregnancy essential and non-essential metal mixtures and gestational glucose concentrations in the 2nd trimester: results from project viva. Environ Int. 2021;155:106690. https://doi.org/10.1016/j.envint.2021.106690.

  6. Smith AR, Lin PD, Rifas-Shiman SL, Rahman ML, Gold DR, Baccarelli AA, et al. Prospective associations of early pregnancy metal mixtures with mitochondria DNA copy number and telomere length in maternal and cord blood. Environ Health Perspect. 2021;129(11):117007. https://doi.org/10.1289/ehp9294.

  7. Howe CG, Claus Henn B, Eckel SP, Farzan SF, Grubbs BH, Chavez TA, et al. Prenatal metal mixtures and birth weight for gestational age in a predominately lower-income hispanic pregnancy cohort in Los Angeles. Environ Health Perspect. 2020;128(11):117001. https://doi.org/10.1289/ehp7201.

  8. Kim SS, Meeker JD, Aung MT, Yu Y, Mukherjee B, Cantonwine DE, et al. Urinary trace metals in association with fetal ultrasound measures during pregnancy. Environ Epidemiol. 2020;4(2). https://doi.org/10.1097/ee9.0000000000000075.

  9. Goodrich JM, Ingle ME, Domino SE, Treadwell MC, Dolinoy DC, Burant C, et al. First trimester maternal exposures to endocrine disrupting chemicals and metals and fetal size in the Michigan mother-infant pairs study. J Dev Orig Health Dis. 2019;10(4):447–58. https://doi.org/10.1017/s204017441800106x.

  10. Howe CG, Claus Henn B, Farzan SF, Habre R, Eckel SP, Grubbs BH, et al. Prenatal metal mixtures and fetal size in mid-pregnancy in the MADRES study. Environ Res. 2021;196:110388. https://doi.org/10.1016/j.envres.2020.110388.

  11. Liu SH, Bobb JF, Claus Henn B, Gennings C, Schnaas L, Tellez-Rojo M, et al. Bayesian varying coefficient kernel machine regression to assess neurodevelopmental trajectories associated with exposure to complex mixtures. Stat Med. 2018;37(30):4680–94. https://doi.org/10.1002/sim.7947.

  12. Bennett DH, Busgang SA, Kannan K, Parsons PJ, Takazawa M, Palmer CD, et al. Environmental exposures to pesticides, phthalates, phenols and trace elements are associated with neurodevelopment in the CHARGE study. Environ Int. 2022;161:107075. https://doi.org/10.1016/j.envint.2021.107075.

  13. Howe CG, Foley HB, Farzan SF, Chavez TA, Johnson M, Meeker JD, et al. Urinary metals and maternal circulating extracellular vesicle microRNA in the MADRES pregnancy cohort. Epigenetics. 2022;17(10):1128–42. https://doi.org/10.1080/15592294.2021.1994189.

  14. Rygiel CA, Dolinoy DC, Perng W, Jones TR, Solano M, Hu H, et al. Trimester-specific associations of prenatal lead exposure with infant cord blood DNA methylation at birth. Epigenet Insights. 2020;13:2516865720938669. https://doi.org/10.1177/2516865720938669.

  15. Bozack AK, Rifas-Shiman SL, Coull BA, Baccarelli AA, Wright RO, Amarasiriwardena C, et al. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics. 2021;13(1):208. https://doi.org/10.1186/s13148-021-01198-z.

  16. Rygiel CA, Dolinoy DC, Bakulski KM, Aung MT, Perng W, Jones TR, et al. DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. Environ Epigenet. 2021;7(1):dvab005. https://doi.org/10.1093/eep/dvab005.

  17. Jukic AMZ, Kim SS, Meeker JD, Weiss ST, Cantonwine DE, McElrath TF, et al. A prospective study of maternal 25-hydroxyvitamin D (25OHD) in the first trimester of pregnancy and second trimester heavy metal levels. Environ Res. 2021;199:111351. https://doi.org/10.1016/j.envres.2021.111351.

  18. Geron M, Cowell W, Amarasiriwardena C, Andra SS, Carroll K, Kloog I, et al. Racial/ethnic and neighborhood disparities in metals exposure during pregnancy in the Northeastern United States. Sci Total Environ. 2022;820:153249. https://doi.org/10.1016/j.scitotenv.2022.153249.

  19. Lin PD, Cardenas A, Rifas-Shiman SL, Hivert MF, James-Todd T, Amarasiriwardena C, et al. Diet and erythrocyte metal concentrations in early pregnancy-cross-sectional analysis in Project Viva. Am J Clin Nutr. 2021;114(2):540–9. https://doi.org/10.1093/ajcn/nqab088.

  20. Kim SS, Meeker JD, Carroll R, Zhao S, Mourgas MJ, Richards MJ, et al. Urinary trace metals individually and in mixtures in association with preterm birth. Environ Int. 2018;121(Pt 1):582–90. https://doi.org/10.1016/j.envint.2018.09.052.

  21. Howe CG, Nozadi SS, Garcia E, O'Connor TG, Starling AP, Farzan SF, et al. Prenatal metal(loid) mixtures and birth weight for gestational age: a pooled analysis of three cohorts participating in the ECHO program. Environ Int. 2022;161:107102. https://doi.org/10.1016/j.envint.2022.107102.

  22. Barker DJP, Thornburg KL. The obstetric origins of health for a lifetime. Clin Obstet Gynecol. 2013;56(3):511–9. https://doi.org/10.1097/GRF.0b013e31829cb9ca.

    Article  PubMed  Google Scholar 

  23. Cheng L, Zhang B, Zheng T, Hu J, Zhou A, Bassig BA, et al. Critical windows of prenatal exposure to cadmium and size at birth. Int J Environ Res Public Health. 2017;14(1). https://doi.org/10.3390/ijerph14010058.

  24. Bastain TM, Chavez T, Habre R, Girguis MS, Grubbs B, Toledo-Corral C, et al. Study design, protocol and profile of the maternal and developmental risks from environmental and social stressors (MADRES) pregnancy cohort: a prospective cohort study in predominantly low-income hispanic women in urban Los Angeles. BMC Pregnancy Childbirth. 2019;19(1):189. https://doi.org/10.1186/s12884-019-2330-7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Muse ME, Li Z, Baker ER, Cottingham KL, Korrick SA, Karagas MR, et al. Relation between in utero arsenic exposure and growth during the first year of life in a New Hampshire pregnancy cohort. Environ Res. 2020;180:108604. https://doi.org/10.1016/j.envres.2019.108604.

  26. Ferguson KK, Rosario Z, McElrath TF, Vélez Vega C, Cordero JF, Alshawabkeh A, et al. Demographic risk factors for adverse birth outcomes in Puerto Rico in the PROTECT cohort. PLoS One. 2019;14(6):e0217770. https://doi.org/10.1371/journal.pone.0217770.

  27. Ballester F, Iñiguez C, Murcia M, Guxens M, Basterretxea M, Rebagliato M, et al. Prenatal exposure to mercury and longitudinally assessed fetal growth: relation and effect modifiers. Environ Res. 2018;160:97–106. https://doi.org/10.1016/j.envres.2017.09.018.

    Article  CAS  PubMed  Google Scholar 

  28. Vigeh M, Nishioka E, Ohtani K, Omori Y, Matsukawa T, Koda S, et al. Prenatal mercury exposure and birth weight. Reprod Toxicol. 2018;76:78–83. https://doi.org/10.1016/j.reprotox.2018.01.002.

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen FH. Manganese, molybdenum, boron, chromium, and other trace elements. Present Knowledge in Nutrition. 2012;586–607.

  30. Liu T, Zhang M, Guallar E, Wang G, Hong X, Wang X, et al. Trace minerals, heavy metals, and preeclampsia: findings from the boston birth cohort. J Am Heart Assoc. 2019;8(16):e012436. https://doi.org/10.1161/jaha.119.012436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Montrose L, Faulk C, Francis J, Dolinoy DC. Perinatal lead (Pb) exposure results in sex and tissue-dependent adult DNA methylation alterations in murine IAP transposons. Environ Mol Mutagen. 2017;58(8):540–50. https://doi.org/10.1002/em.22119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sobolewski M, Varma G, Adams B, Anderson DW, Schneider JS, Cory-Slechta DA. Developmental lead exposure and prenatal stress result in sex-specific reprograming of adult stress physiology and epigenetic profiles in brain. Toxicol Sci. 2018;163(2):478–89. https://doi.org/10.1093/toxsci/kfy046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moon J. The role of vitamin D in toxic metal absorption: a review. J Am Coll Nutr. 1994;13(6):559–64. https://doi.org/10.1080/07315724.1994.10718447.

    Article  CAS  PubMed  Google Scholar 

  34. Petroff RL, Padmanabhan V, Dolinoy DC, Watkins DJ, Ciarelli J, Haggerty D, et al. Prenatal exposures to common phthalates and prevalent phthalate alternatives and infant DNA methylation at birth. Front Genet. 2022;13:793278. https://doi.org/10.3389/fgene.2022.793278.

  35. Montrose L, Padmanabhan V, Goodrich JM, Domino SE, Treadwell MC, Meeker JD, et al. Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics. 2018;13(3):301–9. https://doi.org/10.1080/15592294.2018.1448680.

  36. Ashrap P, Aung MT, Watkins DJ, Mukherjee B, Rosario-Pabón Z, Vélez-Vega CM, et al. Maternal urinary phthalate metabolites are associated with lipidomic signatures among pregnant women in Puerto Rico. J Expo Sci Environ Epidemiol. 2022;32(3):384–91. https://doi.org/10.1038/s41370-022-00410-3.

  37. Yoon LS, Binder AM, Pereira A, Calafat AM, Shepherd J, Corvalán C, et al. Variability in urinary phthalates, phenols, and parabens across childhood and relation to adolescent breast composition in Chilean girls. Environ Int. 2022;170:107586. https://doi.org/10.1016/j.envint.2022.107586.

  38. Fandiño-Del-Rio M, Matsui EC, Peng RD, Meeker JD, Quirós-Alcalá L. Phthalate biomarkers and associations with respiratory symptoms and healthcare utilization among low-income urban children with asthma. Environ Res. 2022;212(Pt B):113239. https://doi.org/10.1016/j.envres.2022.113239.

  39. Haggerty DK, Strakovsky RS, Talge NM, Carignan CC, Glazier-Essalmi AN, Ingersoll BR, et al. Prenatal phthalate exposures and autism spectrum disorder symptoms in low-risk children. Neurotoxicol Teratol. 2021;83:106947. https://doi.org/10.1016/j.ntt.2021.106947.

  40. Parenti M, Schmidt RJ, Ozonoff S, Shin HM, Tancredi DJ, Krakowiak P, et al. Maternal serum and placental metabolomes in association with prenatal phthalate exposure and neurodevelopmental outcomes in the MARBLES cohort. Metabolites. 2022;12(9). https://doi.org/10.3390/metabo12090829.

  41. Barkoski JM, Busgang SA, Bixby M, Bennett D, Schmidt RJ, Barr DB, et al. Prenatal phenol and paraben exposures in relation to child neurodevelopment including autism spectrum disorders in the MARBLES study. Environ Res. 2019;179(Pt A):108719. https://doi.org/10.1016/j.envres.2019.108719.

  42. Kim K, Shin HM, Busgang SA, Barr DB, Panuwet P, Schmidt RJ, et al. Temporal trends of phenol, paraben, and triclocarban exposure in California pregnant women during 2007–2014. Environ Sci Technol. 2021;55(16):11155–65. https://doi.org/10.1021/acs.est.1c01564.

  43. McCabe CF, Padmanabhan V, Dolinoy DC, Domino SE, Jones TR, Bakulski KM, et al. Maternal environmental exposure to bisphenols and epigenome-wide DNA methylation in infant cord blood. Environ Epigenet. 2020;6(1):dvaa021. https://doi.org/10.1093/eep/dvaa021.

  44. Puttabyatappa M, Banker M, Zeng L, Goodrich JM, Domino SE, Dolinoy DC, et al. Maternal exposure to environmental disruptors and sexually dimorphic changes in maternal and neonatal oxidative stress. J Clin Endocrinol Metab. 2020;105(2):492–505. https://doi.org/10.1210/clinem/dgz063.

  45. Kelley AS, Banker M, Goodrich JM, Dolinoy DC, Burant C, Domino SE, et al. Early pregnancy exposure to endocrine disrupting chemical mixtures are associated with inflammatory changes in maternal and neonatal circulation. Sci Rep. 2019;9(1):5422. https://doi.org/10.1038/s41598-019-41134-z.

  46. Dutta S, Haggerty DK, Rappolee DA, Ruden DM. Phthalate exposure and long-term epigenomic consequences: a review. Front Genet. 2020;11:405. https://doi.org/10.3389/fgene.2020.00405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92. https://doi.org/10.1038/nrg3230.

    Article  CAS  PubMed  Google Scholar 

  48. Strakovsky RS, Wang H, Engeseth NJ, Flaws JA, Helferich WG, Pan YX, et al. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis. Toxicol Appl Pharmacol. 2015;284(2):101–12. https://doi.org/10.1016/j.taap.2015.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wen Y, Rattan S, Flaws JA, Irudayaraj J. Multi and transgenerational epigenetic effects of di-(2-ethylhexyl) phthalate (DEHP) in liver. Toxicol Appl Pharmacol. 2020;402:115123. https://doi.org/10.1016/j.taap.2020.115123.

  50. Anderson OS, Kim JH, Peterson KE, Sanchez BN, Sant KE, Sartor MA, et al. Novel epigenetic biomarkers mediating bisphenol A exposure and metabolic phenotypes in female mice. Endocrinology. 2017;158(1):31–40. https://doi.org/10.1210/en.2016-1441.

    Article  CAS  PubMed  Google Scholar 

  51. Neier K, Montrose L, Chen K, Malloy MA, Jones TR, Svoboda LK, et al. Short- and long-term effects of perinatal phthalate exposures on metabolic pathways in the mouse liver. Environ Epigenet. 2020;6(1):dvaa017. https://doi.org/10.1093/eep/dvaa017.

  52. Adam N, Lachayze MA, Parmentier C, Hardin-Pouzet H, Mhaouty-Kodja S. Exposure to environmentally relevant doses of plasticizers alters maternal behavior and related neuroendocrine processes in primiparous and multiparous female mice. Environ Pollut. 2022;315:120487. https://doi.org/10.1016/j.envpol.2022.120487.

  53. Weinhouse C, Sartor MA, Faulk C, Anderson OS, Sant KE, Harris C, et al. Epigenome-wide DNA methylation analysis implicates neuronal and inflammatory signaling pathways in adult murine hepatic tumorigenesis following perinatal exposure to bisphenol A. Environ Mol Mutagen. 2016;57(6):435–46. https://doi.org/10.1002/em.22024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu X, Craig ZR. Environmentally relevant exposure to dibutyl phthalate disrupts DNA damage repair gene expression in the mouse ovary†. Biol Reprod. 2019;101(4):854–67. https://doi.org/10.1093/biolre/ioz122.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Senyildiz M, Karaman EF, Bas SS, Pirincci PA, Ozden S. Effects of BPA on global DNA methylation and global histone 3 lysine modifications in SH-SY5Y cells: an epigenetic mechanism linking the regulation of chromatin modifiying genes. Toxicol In Vitro. 2017;44:313–21. https://doi.org/10.1016/j.tiv.2017.07.028.

    Article  CAS  PubMed  Google Scholar 

  56. Dubois V, Eeckhoute J, Lefebvre P, Staels B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Investig. 2017;127(4):1202–14. https://doi.org/10.1172/JCI88894.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tang R, Chen MJ, Ding GD, Chen XJ, Han XM, Zhou K, et al. Associations of prenatal exposure to phenols with birth outcomes. Environ Pollut. 2013;178:115–20. https://doi.org/10.1016/j.envpol.2013.03.023.

    Article  CAS  PubMed  Google Scholar 

  58. Welch BM, Keil AP, Buckley JP, Calafat AM, Christenbury KE, Engel SM, et al. Associations between prenatal urinary biomarkers of phthalate exposure and preterm birth: a pooled study of 16 US cohorts. JAMA Pediatr. 2022;176(9):895–905. https://doi.org/10.1001/jamapediatrics.2022.2252.

  59. Bornehag CG, Engdahl E, Unenge Hallerbäck M, Wikström S, Lindh C, Rüegg J, et al. Prenatal exposure to bisphenols and cognitive function in children at 7 years of age in the Swedish SELMA study. Environ Int. 2021;150:106433. https://doi.org/10.1016/j.envint.2021.106433.

  60. Ejaredar M, Lee Y, Roberts DJ, Sauve R, Dewey D. Bisphenol A exposure and children’s behavior: a systematic review. J Eposure Sci Environ Epidemiol. 2017;27(2):175–83. https://doi.org/10.1038/jes.2016.8.

    Article  CAS  Google Scholar 

  61. Lucaccioni L, Trevisani V, Passini E, Righi B, Plessi C, Predieri B, et al. Perinatal exposure to phthalates: from endocrine to neurodevelopment effects. Int J Mol Sci. 2021;22(8). https://doi.org/10.3390/ijms22084063.

  62. Feron VJ, Cassee FR, Groten JP, van Vliet PW, van Zorge JA. International issues on human health effects of exposure to chemical mixtures. Environ Health Perspect. 2002;110 Suppl 6(Suppl 6):893–9. https://doi.org/10.1289/ehp.02110s6893.

  63. Tan Y, Barr DB, Ryan PB, Fedirko V, Sarnat JA, Gaskins AJ, et al. High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort. Environ Pollut. 2022;292(Pt A):118361. https://doi.org/10.1016/j.envpol.2021.118361.

  64. Mahabee-Gittens EM, Ammerman RT, Khoury JC, Tabangin ME, Ding L, Merianos AL, et al. A parental smoking cessation intervention in the pediatric emergency setting: a randomized trial. Int J Environ Res Public Health. 2020;17(21). https://doi.org/10.3390/ijerph17218151.

  65. Ruran HB, Maciag MC, Murphy SE, Phipatanakul W, Hauptman M. Cross-sectional study of urinary biomarkers of environmental tobacco and e-cigarette exposure and asthma morbidity. Ann Allergy Asthma Immunol. 2022;129(3):378–80. https://doi.org/10.1016/j.anai.2022.06.001.

  66. Peacock JL, Palys TJ, Halchenko Y, Sayarath V, Takigawa CA, Murphy SE, et al. Assessing tobacco smoke exposure in pregnancy from self-report, urinary cotinine and NNAL: a validation study using the New Hampshire Birth Cohort Study. BMJ Open. 2022;12(2):e054535. https://doi.org/10.1136/bmjopen-2021-054535.

  67. Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79–115. https://doi.org/10.1124/pr.57.1.3.

    Article  CAS  PubMed  Google Scholar 

  68. Nardone N, Jain S, Addo N, St Helen G, Jacob P, 3rd, Benowitz NL. Sources and biomarkers of secondhand tobacco smoke exposure in urban adolescents. Acad Pediatr. 2020;20(4):493–500. https://doi.org/10.1016/j.acap.2019.12.006.

  69. Chang CJ, Ryan PB, Smarr MM, Kannan K, Panuwet P, Dunlop AL, et al. Serum per- and polyfluoroalkyl substance (PFAS) concentrations and predictors of exposure among pregnant African American women in the Atlanta area, Georgia. Environ Res. 2021;198:110445. https://doi.org/10.1016/j.envres.2020.110445.

  70. Chang CJ, Barr DB, Zhang Q, Dunlop AL, Smarr MM, Kannan K, et al. Associations of single and multiple per- and polyfluoroalkyl substance (PFAS) exposure with vitamin D biomarkers in African American women during pregnancy. Environ Res. 2021;202:111713. https://doi.org/10.1016/j.envres.2021.111713.

  71. Chang CJ, Barr DB, Ryan PB, Panuwet P, Smarr MM, Liu K, et al. Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: a meet-in-the-middle approach. Environ Int. 2022;158:106964. https://doi.org/10.1016/j.envint.2021.106964.

  72. Chen Z, Yang T, Walker DI, Thomas DC, Qiu C, Chatzi L, et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ Int. 2020;145:106091. https://doi.org/10.1016/j.envint.2020.106091.

  73. Oh J, Shin HM, Kannan K, Busgang SA, Schmidt RJ, Schweitzer JB, et al. Childhood exposure to per- and polyfluoroalkyl substances and neurodevelopment in the CHARGE case-control study. Environ Res. 2022;215(Pt 2):114322. https://doi.org/10.1016/j.envres.2022.114322.

  74. Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM. Trends in exposure to polyfluoroalkyl chemicals in the U.S. population: 1999–2008. Environ Sci Technol. 2011;45(19):8037–45. https://doi.org/10.1021/es1043613.

  75. Domingo JL, Nadal M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature. Environ Res. 2019;177:108648. https://doi.org/10.1016/j.envres.2019.108648.

    Article  CAS  PubMed  Google Scholar 

  76. Jain RB. Contribution of diet and other factors to the levels of selected polyfluorinated compounds: data from NHANES 2003–2008. Int J Hyg Environ Health. 2014;217(1):52–61. https://doi.org/10.1016/j.ijheh.2013.03.008.

    Article  CAS  PubMed  Google Scholar 

  77. Oken E, Baccarelli AA, Gold DR, Kleinman KP, Litonjua AA, De Meo D, et al. Cohort profile: project viva. Int J Epidemiol. 2015;44(1):37–48. https://doi.org/10.1093/ije/dyu008.

    Article  PubMed  Google Scholar 

  78. Bellinger DC. Very low lead exposures and children’s neurodevelopment. Curr Opin Pediatr. 2008;20(2):172–7. https://doi.org/10.1097/MOP.0b013e3282f4f97b.

    Article  PubMed  Google Scholar 

  79. Ruth S, Zota A. Prenatal and postnatal mercury exposure on neurodevelopment: a systematic review of human evidence. 2019.

  80. Ciesielski T, Weuve J, Bellinger DC, Schwartz J, Lanphear B, Wright RO. Cadmium exposure and neurodevelopmental outcomes in U.S. children. Environ Health Perspect. 2012;120(5):758–63. https://doi.org/10.1289/ehp.1104152.

  81. Sanders AP, Claus Henn B, Wright RO. Perinatal and childhood exposure to cadmium, manganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr Environ Health Rep. 2015;2(3):284–94. https://doi.org/10.1007/s40572-015-0058-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Buckley JP, Barrett ES, Beamer PI, Bennett DH, Bloom MS, Fennell TR, et al. Opportunities for evaluating chemical exposures and child health in the United States: the environmental influences on child health outcomes (ECHO) program. J Expo Sci Environ Epidemiol. 2020;30(3):397–419. https://doi.org/10.1038/s41370-020-0211-9.

  83. Stingone JA, Mervish N, Kovatch P, McGuinness DL, Gennings C, Teitelbaum SL. Big and disparate data: considerations for pediatric consortia. Curr Opin Pediatr. 2017;29(2):231–9. https://doi.org/10.1097/mop.0000000000000467.

  84. McCusker JP, Rashid SM, Liang Z, Liu Y, Chastain K, Pinheiro P, et al. Broad, interdisciplinary science in tela: an exposure and child health ontology. Proceedings of the 2017 ACM on Web Science Conference.2017. p. 349–57.

Download references

Funding

This work was supported by the National Institute of Environmental Health Sciences: U2CES026555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Mervish.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIEHS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mervish, N., Valle, C. & Teitelbaum, S.L. Epidemiologic Advances Generated by the Human Health Exposure Analysis Resource Program. Curr Epidemiol Rep 10, 148–157 (2023). https://doi.org/10.1007/s40471-023-00323-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-023-00323-1

Keywords

Navigation