•• Blei DM, Smyth P. Science and data science. Proc Natl Acad Sci. 2017;114(33):8689–92. This paper discusses data science from the statistical, computational, and human perspective and why scientists should care about data science.
CAS
Article
Google Scholar
Jordan MI, et al. On statistics, computation and scalability. Bernoulli. 2013;19(4):1378–90.
Article
Google Scholar
Mahalingaiah S, Lane KJ, Kim C, Cheng JJ, Hart JE. Impacts of air pollution on gynecologic disease: infertility, menstrual irregularity, uterine fibroids, and endometriosis: a systematic review and commentary. Curr Epidemiol Rep. 2018;5(3):197–204.
Article
Google Scholar
• Gibson EA, Goldsmith JA, Kioumourtzoglou M-A. Complex mixtures, complex analyses: an emphasis on interpretable results. Curr Environ Health Rep. 2019;6(2):53–61. This paper discusses methods to address exposure to environmental mixtures in health studies—one of the areas where environmental health research is already embracing data science analytic approaches—and discusses advantages and pitfalls for the specific application in mixtures analyses.
CAS
Article
Google Scholar
Manrai AK, Cui Y, Bushel PR, Hall M, Karakitsios S, Mattingly CJ, et al. Informatics and data analytics to support exposome-based discovery for public health. Annu Rev Public Health. 2017;38(1):279–94.
Article
Google Scholar
Lankadurai BP, Nagato EG, Simpson MJ. Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev. 2013;21(3):180–205.
CAS
Article
Google Scholar
Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, et al. Air pollution and mortality in the Medicare population. N Engl J Med. 2017;376(26):2513–22.
CAS
Article
Google Scholar
Luraschi J, Kuo K, Ushey K, Allaire JJ, The Apache Software Foundation. sparklyr: R interface to Apache Spark. 2019. https://CRAN.R-project.org/package=sparklyr. R package version 1.0.0.
Owczarz W, Zlatev Z. Parallel matrix computations in air pollution modelling. Parallel Comput. 2002;28(2):355–68.
Article
Google Scholar
Brown J, Wásniewski J, Zlatev Z. Running air pollution models on massively parallel machines. Parallel Comput. 1995;21(6):971–91.
Article
Google Scholar
Molnar F Jr, Szakaly T, Meszaros R, Lagzi I. Air pollution modelling using a graphics processing unit with CUDA. Comput Phys Commun. 2010;181(1):105–12.
CAS
Article
Google Scholar
Flaumenhaft Y, Ben-Assuli O. Personal health records, global policy and regulation review. Health Policy. 2018;122(8):815–26 ISSN 0168-8510.
Article
Google Scholar
•• Patel CJ, Pho N, McDuffie M, Easton-Marks J, Kothari C, Kohane IS, et al. A database of human exposomes and phenomes from the US National Health and Nutrition Examination Survey. Sci Data. 2016;3:160096. This paper presents the successful integration of multiple publicly available datasets into a unified research data platform.
CAS
Article
Google Scholar
Robinson O, Tamayo I, De Castro M, Valentin A, Giorgis-Allemand L, Krog NH, et al. The urban exposome during pregnancy and its socioeconomic determinants. Environ Health Perspect. 2018;126(7):077005.
Article
Google Scholar
Nieuwenhuijsen MJ, Agier L, Basagaña X, Urquiza J, Tamayo-Uria I, Giorgis-Allemand L, et al. Influence of the urban exposome on birth weight. Environ Health Perspect. 2019;127(4):047007.
Article
Google Scholar
Raisaro JL, Troncoso-Pastoriza J, Misbach M, Sousa JS, Pradervand S, Missiaglia E, et al. MedCo: Enabling secure and privacy-preserving exploration of distributed clinical and genomic data. IEEE/ACM Trans Comput Biol Bioinform. 2018:1. https://doi.org/10.1109/TCBB.2018.2854776 ISSN 1545-5963. https://ieeexplore.ieee.org/document/8410926/.
Madhyastha TM, Koh N, Day TKM, Hernández-Fernández M, Kelley A, Peterson DJ, et al. Running neuroimaging applications on amazon web services: how, when, and at what cost? Front Neuroinform. 2017;11:63.
Article
Google Scholar
Weber N, Liou D, Dommer J, MacMenamin P, Quiñones M, Misner I, et al. Nephele: a cloud platform for simplified, standardized and reproducible microbiome data analysis. Bioinformatics. 2017;34(8):1411–3.
Article
Google Scholar
Frei P, Mohler E, Bürgi A, Fröhlich J, Neubauer G, Braun-Fahrländer C, et al. A prediction model for personal radio frequency electromagnetic field exposure. Sci Total Environ. 2009;408(1):102–8.
CAS
Article
Google Scholar
Boeije G, Vanrolleghem P, Matthies M. A geo-referenced aquatic exposure prediction methodology for down-the drain chemicals. Water Sci Technol. 1997;36(5):251–8.
CAS
Article
Google Scholar
Kloog I, Nordio F, Coull BA, Schwartz J. Predicting spatiotemporal mean air temperature using MODIS satellite surface temperature measurements across the northeastern USA. Remote Sens Environ. 2014;150:132–9.
Article
Google Scholar
Kloog I, Chudnovsky AA, Just AC, Nordio F, Koutrakis P, Coull BA, et al. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. Atmos Environ. 2014;95:581–90.
CAS
Article
Google Scholar
Van Donkelaar A, Martin RV, Spurr RJD, Burnett RT. High resolution satellite-derived PM2.5 from optimal estimation and geographically weighted regression over north America. Environ Sci Technol. 2015;49(17):10482–91.
Article
Google Scholar
Al-Hamdan MZ, Crosson WL, Limaye AS, Rickman DL, Quattrochi DA, Estes MG Jr, et al. Methods for characterizing fine particulate matter using ground observations and remotely sensed data: potential use for environmental public health surveillance. J Air Waste Manage Assoc. 2009;59(7):865–81.
CAS
Article
Google Scholar
Yanosky JD, Paciorek CJ, Laden F, Hart JE, Puett RC, Liao D, et al. Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors. Environ Health. 2014;13(1):63.
Article
Google Scholar
Bi J, Belle JH, Wang Y, Lyapustin AI, Wildani A, Liu Y. Impacts of snow and cloud covers on satellite-derived PM2.5 levels. Remote Sens Environ. 2019;221:665–74.
Article
Google Scholar
Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J. Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ Sci Technol. 2016;50(9):4712–21.
CAS
Article
Google Scholar
Chipman HA, George EI, McCulloch RE. Bayesian ensemble learning. In: Advances in neural information processing systems; 2007. p. 265–72.
Google Scholar
Hoeting, Jennifer A., David Madigan, Adrian E. Raftery, and Chris T. Volinsky. "Bayesian Model Averaging: A Tutorial." Stat Sci, 1999, 14(4): 382-401. http://www.jstor.org/stable/2676803.
Li L, Zhang J, Qiu W, Wang J, Fang Y. An ensemble spatiotemporal model for predicting PM2.5 concentrations. Int J Environ Res Public Health. 2017;14(5):549.
Article
Google Scholar
Shaddick G, Thomas ML, Green A, Brauer M, van Donkelaar A, Burnett R, et al. Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution. J R Stat Soc: Ser C: Appl Stat. 2018;67(1):231–53.
Article
Google Scholar
Hong KY, Pinheiro PO, Minet L, Hatzopoulou M, Weichenthal S. Extending the spatial scale of land use regression models for ambient ultrafine particles using satellite images and deep convolutional neural networks. Environ Res. 2019;176:108513.
CAS
Article
Google Scholar
Lee D, Mukhopadhyay S, Rushworth A, Sahu SK. A rigorous statistical framework for spatio-temporal pollution prediction and estimation of its long-term impact on health. Biostatistics. 2016;18(2):370–85.
Google Scholar
Carroll RJ, Ruppert D, Crainiceanu CM, Stefanski LA. Measurement error in nonlinear models: a modern perspective. Chapman and Hall/CRC; 2006.
Sheppard L, Burnett RT, Szpiro AA, Kim S-Y, Jerrett M, Pope CA, et al. Confounding and exposure measurement error in air pollution epidemiology. Air Qual Atmos Health. 2012;5(2):203–16.
Article
Google Scholar
Liu J, Paisley J, Kioumourtzoglou M-A, Coull BA. Adaptive and calibrated ensemble learning with dependent tail-free process. BNP @ NeurIPS. 2018.
Jeremiah Zhe Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, and Brent A. Coull. Adaptive ensemble learning of spatiotemporal processes with calibrated predictive uncertainty: a bayesian nonparametric approach. 2019. arXiv:1904.00521 [stat.ME].
Bobb JF, Obermeyer Z, Wang Y, Dominici F. Cause-specific risk of hospital admission related to extreme heat in older adults. JAMA. 2014;312(24):2659–67.
CAS
Article
Google Scholar
Krall JR, Chang HH, Waller LA, Mulholland JA, Winquist A, Talbott EO, et al. A multicity study of air pollution and cardiorespiratory emergency department visits: comparing approaches for combining estimates across cities. Environ Int. 2018;120:312–20.
CAS
Article
Google Scholar
Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. Chapman and Hall/CRC; 2013.
Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge university press; 2006.
Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: a review for statisticians. J Am Stat Assoc. 2017;112(518):859–77.
CAS
Article
Google Scholar
Hoffman MD, Blei DM, Wang C, Paisley J. Stochastic variational inference. J Mach Learn Res. 2013;14(1):1303–47.
Google Scholar
Van der Laan MJ, Gruber S. Collaborative double robust targeted maximum likelihood estimation. Int J Biostat. 2010 May 17;6(1):Article 17. doi: https://doi.org/10.2202/1557-4679.1181.
De Luna X, Waernbaum I, Richardson TS. Covariate selection for the nonparametric estimation of an average treatment effect. Biometrika. 2011;98(4):861–75.
Article
Google Scholar
Vansteelandt S, Bekaert M, Claeskens G. On model selection and model misspecification in causal inference. Stat Methods Med Res. 2012;21(1):7–30.
Article
Google Scholar
Wang C, Parmigiani G, Dominici F. Bayesian effect estimation accounting for adjustment uncertainty. Biometrics. 2012;68(3):661–71.
Article
Google Scholar
Zigler CM, Dominici F. Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects. J Am Stat Assoc. 2014;109(505):95–107.
CAS
Article
Google Scholar
Trevor H, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Springer Series in Statistics; 2009.
James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. New York: Springer; 2013.
Book
Google Scholar
Greenland S, Robins JM, Pearl J, et al. Confounding and collapsibility in causal inference. Stat Sci. 1999;14(1):29–46.
Article
Google Scholar
Hernán MA, Clayton D, Keiding N. The Simpson’s paradox unraveled. Int J Epidemiol. 2011;40(3):780–5.
Article
Google Scholar
Antonelli, Joseph; Parmigiani, Giovanni; Dominici, Francesca. High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors. Bayesian Anal, 2019, 14(3):805--828. doi:https://doi.org/10.1214/18-BA1131.
Belloni A, Chernozhukov V, Hansen C. Inference on treatment effects after selection among high-dimensional controls. Rev Econ Stud. 2014;81(2):608–50.
Article
Google Scholar
Ertefaie, A., Asgharian, M. & Stephens, D. (2017). Variable Selection in Causal Inference using a Simultaneous Penalization Method. Journal of Causal Inference, 6(1), pp. -. Retrieved 9 Jul. 2019, from https://doi.org/10.1515/jci-2017-0010. https://www.degruyter.com/view/j/jci.ahead-of-print/jci-2017-0010/jci-2017-0010.xml
Farrell MH. Robust inference on average treatment effects with possibly more covariates than observations. J Econ. 2015;189(1):1–23.
Article
Google Scholar
Wilson A, Reich BJ. Confounder selection via penalized credible regions. Biometrics. 2014;70(4):852–61.
Article
Google Scholar
Antonelli J, Cefalu M, Palmer N, Agniel D. Doubly robust matching estimators for high dimensional confounding adjustment. Biometrics. 2018;74(4):1171–9.
Article
Google Scholar
VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the e-value. Ann Intern Med. 2017;167(4):268–74.
Article
Google Scholar
Haneuse S, VanderWeele TJ, Arterburn D. Using the e-value to assess the potential effect of unmeasured confounding in observational studies. JAMA. 2019;321(6):602–3.
Article
Google Scholar
Hamra GB, Buckley JP. Environmental exposure mixtures: questions and methods to address them. Curr Epidemiol Rep. 2018;5(2):160–5.
Article
Google Scholar
Stafoggia M, Breitner S, Hampel R, Basagaña X. Statistical approaches to address multi-pollutant mixtures and multiple exposures: the state of the science. Curr Environ Health Rep. 2017;4(4):481–90.
CAS
Article
Google Scholar
Huang H, AolinWang RM-F, Lam J, Sirota M, Padula A, Woodruff TJ. Cumulative risk and impact modeling on environmental chemical and social stressors. Curr Environ Health Rep. 2018;5(1):88–99.
CAS
Article
Google Scholar
Bellavia A, James-Todd T, Williams PL. Approaches for incorporating environmental mixtures as mediators in mediation analysis. Environ Int. 2019;123:368–74.
Article
Google Scholar
•• National Academies of Sciences, Engineering and Medicine. Reproducibility and replicability in science. The National Academies Press, Washington, DC, 2019. ISBN 978-0-309-48613-2. https://doi.org/10.17226/25303. https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science. This report defines the terms “reproducibility” and “replicability” for intended use across all fields of science.
Daniel Krewski RT, Burnett M, Goldberg K, Hoover J, Siemiatycki MA, White W. Reanalysis of the Harvard Six Cities Study, Part I: Validation and replication. Inhal Toxicol. 2005. ISSN 08958378;17(7–8):335–42. https://doi.org/10.1080/08958370590929402.
CAS
Article
Google Scholar
Peng RD. Reproducible research in computational science. Science. 2011;334(6060):1226–7.
CAS
Article
Google Scholar
•• Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. Comment: The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:1–9. https://doi.org/10.1038/sdata.2016.18 ISSN 20524463. This paper presents four principles to improve infrastructure supporting the reuse of scholarly data.
Article
Google Scholar
Henneman LRF, Choirat C, Ivey C, Cummiskey K, Zigler CM. Characterizing population exposure to coal emissions sources in the United States using the Hyads model. Atmos Environ. 2019;203:271–80.
CAS
Article
Google Scholar
Perkel JM. A toolkit for data transparency. Nature. 2018;560(7719):513–5. https://doi.org/10.1038/d41586-018-05990-5 ISSN 0028-0836. URL http://www.nature.com/articles/d41586-018-05990-5.
CAS
Article
PubMed
Google Scholar
Beaulieu-Jones BK, Greene CS. Reproducibility of computational workflows is automated using continuous analysis. Nat Biotechnol. 2017;35(4):342–6 ISSN 1546-1696.
CAS
Article
Google Scholar
Code Ocean — Discover & Run Scientific Code. URL https://codeocean.com/.
Binder (beta). URL https://mybinder.org/.
Renku. URL https://renkulab.io/.
Brinckman A, Chard K, Gaffney N, Hategan M, Jones MB, Kowalik K, et al. Computing environments for reproducibility: capturing the whole tale. Futur Gener Comput Syst. 2019. ISSN 0167739X;94:854–67. https://doi.org/10.1016/j.future.2017.12.029.
Article
Google Scholar
Pastrana E, Swaminathan S. Nature research journals trial new tools to enhance code peer review and publication. 2018. http://blogs.nature.com/ofschemesandmemes/2018/08/01/nature-research-journals-trial-new-tools-to-enhance-code-peer-review-and-publication.
Dwork C. Differential privacy. In: Proceedings of the 33rd International Conference on Automata, Languages and Programming - Volume Part II, ICALP’06, pages 1–12, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-35907-9, 978-3-540-35907-4.
edX. Courses taught by Rafael Irizarry. https://www.edx.org/bio/rafael-irizarry.
Coursera. Courses taught by Jeff Leek. https://www.coursera.org/instructor/~694443.