Pharmacoepidemiology in the Era of Real-World Evidence

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Dunlop DM. Drug control and the British Health Service. Ann Intern Med. 1969;71(2):237–44.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Stolley PD, Lasagna L. Prescribing patterns of physicians. J Chronic Dis. 1969;22(6):395–405.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Federspiel CF, Ray WA, Schaffner W. Medicaid records as a valid data source: the Tennessee experience. Med Care. 1976;14(2):166–72.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58(4):323–37. https://doi.org/10.1016/j.jclinepi.2004.10.012.

    Article  PubMed  Google Scholar 

  5. 5.

    U.S. Food and Drug Administration. Use of real-world evidence to support regulatory decision-making for medical devices. Guidance for industry and Food and Drug Administration staff. 2017. Available from: https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm513027.pdf. Accessed 1 Oct 2017.

  6. 6.

    114th Congress. Public Law 114–255. 2016. Available from: https://www.congress.gov/114/plaws/publ255/PLAW-114publ255.pdf. Accessed 1 Oct 2017.

  7. 7.

    European Medicines Agency. Guidance for companies considering the adaptive pathways approach. 2016. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2015/11/WC500196726.pdf. Accessed 1 Oct 2017.

  8. 8.

    Sherman RE, Anderson SA, Dal Pan GJ, Gray GW, Gross T, Hunter NL, et al. Real-world evidence—what is it and what can it tell us? N Engl J Med. 2016;375(23):2293–7. https://doi.org/10.1056/NEJMsb1609216.

    Article  PubMed  Google Scholar 

  9. 9.

    Jarow JP, LaVange L, Woodcock J. Multidimensional evidence generation and FDA regulatory decision making: defining and using “real-world” data. JAMA. 2017;318(8):703–4. https://doi.org/10.1001/jama.2017.9991.

    Article  PubMed  Google Scholar 

  10. 10.

    Ball R, Robb M, Anderson SA, Dal Pan G. The FDA’s sentinel initiative—a comprehensive approach to medical product surveillance. Clin Pharmacol Ther. 2016;99(3):265–8. https://doi.org/10.1002/cpt.320.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    U.S. Food and Drug Administration. Guidance for industry and FDA staff: best practices for conducting and reporting pharmacoepidemiologic safety studies using electronic healthcare data. 2013. Available from: https://www.fda.gov/downloads/drugs/guidances/ucm243537.pdf. Accessed 1 Oct 2017.

  12. 12.

    The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP). Guide on methodological standards in pharmacoepidemiology (Revision 5). 2016. Available from: http://www.encepp.eu/standards_and_guidances/documents/ENCePPGuideofMethStandardsinPE_Rev5.pdf. Accessed 1 Oct 2017.

  13. 13.

    Public Policy Committee of the International Society for Pharmacoepidemiology. Guidelines for good pharmacoepidemiology practice (GPP). Pharmacoepidemiol Drug Saf. 2016;25(1):2–10. https://doi.org/10.1002/pds.3891.

    Article  Google Scholar 

  14. 14.

    Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med. 2015;12(10):e1001885. https://doi.org/10.1371/journal.pmed.1001885.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wang SV, Schneeweiss S, Berger ML, Brown J, de Vries F, Douglas I, et al. Reporting to improve reproducibility and facilitate validity assessment for healthcare database studies V1.0. Pharmacoepidemiol Drug Saf. 2017;26(9):1018–32. https://doi.org/10.1002/pds.4295.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Suissa S, Garbe E. Primer: administrative health databases in observational studies of drug effects—advantages and disadvantages. Nat Clin Pract Rheumatol. 2007;3(12):725–32. https://doi.org/10.1038/ncprheum0652.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PR, Bernstam EV, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care. 2013;51(8 Suppl 3):S30–7. https://doi.org/10.1097/MLR.0b013e31829b1dbd.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Brown JS, Kahn M, Toh S. Data quality assessment for comparative effectiveness research in distributed data networks. Med Care. 2013;51(8 Suppl 3):S22–9. https://doi.org/10.1097/MLR.0b013e31829b1e2c.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kahn MG, Raebel MA, Glanz JM, Riedlinger K, Steiner JF. A pragmatic framework for single-site and multisite data quality assessment in electronic health record-based clinical research. Med Care. 2012;50(Suppl):S21–9. https://doi.org/10.1097/MLR.0b013e318257dd67.

    Article  PubMed  Google Scholar 

  20. 20.

    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5. https://doi.org/10.1056/NEJMp1500523.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Brown JS, Holmes JH, Shah K, Hall K, Lazarus R, Platt R. Distributed health data networks: a practical and preferred approach to multi-institutional evaluations of comparative effectiveness, safety, and quality of care. Med Care. 2010;48(6 Suppl):S45–51. https://doi.org/10.1097/MLR.0b013e3181d9919f.

    Article  PubMed  Google Scholar 

  22. 22.

    Curtis LH, Brown J, Platt R. Four health data networks illustrate the potential for a shared national multipurpose big-data network. Health Aff (Millwood). 2014;33(7):1178–86. https://doi.org/10.1377/hlthaff.2014.0121.

    Article  PubMed  Google Scholar 

  23. 23.

    Suissa S, Henry D, Caetano P, Dormuth CR, Ernst P, Hemmelgarn B, et al. CNODES: the Canadian Network for Observational Drug Effect Studies. Open Med. 2012;6(4):e134–40.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS. Launching PCORnet, a national patient-centered clinical research network. J Am Med Inform Assoc. 2014;21(4):578–82. https://doi.org/10.1136/amiajnl-2014-002747.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Richesson RL, Hammond WE, Nahm M, Wixted D, Simon GE, Robinson JG, et al. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J Am Med Inform Assoc. 2013;20(e2):e226–31. https://doi.org/10.1136/amiajnl-2013-001926.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Vogel J, Brown JS, Land T, Platt R, Klompas M. MDPHnet: secure, distributed sharing of electronic health record data for public health surveillance, evaluation, and planning. Am J Public Health. 2014;104(12):2265–70. https://doi.org/10.2105/AJPH.2014.302103.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Toh S, Gagne JJ, Rassen JA, Fireman BH, Kulldorff M, Brown JS. Confounding adjustment in comparative effectiveness research conducted within distributed research networks. Med Care. 2013;51(8 Suppl 3):S4–10. https://doi.org/10.1097/MLR.0b013e31829b1bb1.

    Article  PubMed  Google Scholar 

  28. 28.

    Gagne JJ, Han X, Hennessy S, Leonard CE, Chrischilles EA, Carnahan RM, et al. Successful comparison of US Food and Drug Administration Sentinel analysis tools to traditional approaches in quantifying a known drug-adverse event association. Clin Pharmacol Ther. 2016; https://doi.org/10.1002/cpt.429.

  29. 29.

    Zhou M, Wang SV, Leonard CE, Gagne JJ, Fuller C, Hampp C, et al. Sentinel modular program for propensity score-matched cohort analyses: application to glyburide, glipizide, and serious hypoglycemia. Epidemiology. 2017;28(6):838–46. https://doi.org/10.1097/EDE.0000000000000709.

    Article  PubMed  Google Scholar 

  30. 30.

    Lavallee DC, Chenok KE, Love RM, Petersen C, Holve E, Segal CD, et al. Incorporating patient-reported outcomes into health care to engage patients and enhance care. Health Aff (Millwood). 2016;35(4):575–82. https://doi.org/10.1377/hlthaff.2015.1362.

    Article  Google Scholar 

  31. 31.

    AMCP Task Force on Biosimilar Collective Intelligence Systems, Baldziki M, Brown J, Chan H, Cheetham TC, Conn T, et al. Utilizing data consortia to monitor safety and effectiveness of biosimilars and their innovator products. J Manag Care Spec Pharm. 2015;21(1):23–34. 10.18553/jmcp.2015.21.1.23.

    Article  Google Scholar 

  32. 32.

    Huang SS, Septimus E, Kleinman K, Moody J, Hickok J, Avery TR, et al. Targeted versus universal decolonization to prevent ICU infection. N Engl J Med. 2013;368(24):2255–65. https://doi.org/10.1056/NEJMoa1207290.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Hernandez AF, Fleurence RL, Rothman RL. The ADAPTABLE Trial and PCORnet: shining light on a new research paradigm. Ann Intern Med. 2015;163(8):635–6. https://doi.org/10.7326/M15-1460.

    Article  PubMed  Google Scholar 

  34. 34.

    Walker AM, Zhou X, Ananthakrishnan AN, Weiss LS, Shen R, Sobel RE, et al. Computer-assisted expert case definition in electronic health records. Int J Med Inform. 2016;86:62–70. https://doi.org/10.1016/j.ijmedinf.2015.10.005.

    Article  PubMed  Google Scholar 

  35. 35.

    Schuemie MJ, Sen E, t Jong GW, van Soest EM, Sturkenboom MC, Kors JA. Automating classification of free-text electronic health records for epidemiological studies. Pharmacoepidemiol Drug Saf. 2012;21(6):651–8. https://doi.org/10.1002/pds.3205.

    Article  PubMed  Google Scholar 

  36. 36.

    Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med. 2010;29(3):337–46. https://doi.org/10.1002/sim.3782.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol. 2010;63(8):826–33. https://doi.org/10.1016/j.jclinepi.2009.11.020.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Reade S, Spencer K, Sergeant JC, Sperrin M, Schultz DM, Ainsworth J, et al. Cloudy with a chance of pain: engagement and subsequent attrition of daily data entry in a smartphone pilot study tracking weather, disease severity, and physical activity in patients with rheumatoid arthritis. JMIR Mhealth Uhealth. 2017;5(3):e37. https://doi.org/10.2196/mhealth.6496.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Toh is partially supported by the National Institute of Biomedical Imaging and Bioengineering (U01EB023683).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sengwee Toh.

Ethics declarations

Conflict of Interest

Sengwee Toh is a Section Editor for Current Epidemiology Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toh, S. Pharmacoepidemiology in the Era of Real-World Evidence. Curr Epidemiol Rep 4, 262–265 (2017). https://doi.org/10.1007/s40471-017-0123-y

Download citation

Keywords

  • Pharmacoepidemiology
  • Real-world Evidence (RWE)
  • Precision Medicine Research
  • Electronic Health Record Database
  • Disease Registry Data