Skip to main content
Log in

Height and Risk of Adult Cancers: a Review

  • Cancer Epidemiology (G Colditz, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Recent prospective studies have revealed modest positive associations of adult height with risk of all cancers as well as risk of cancers at most anatomical sites, including cancers of the colon, rectum, liver, skin melanoma, breast, corpus uteri, ovary, prostate, kidney, central nervous system, thyroid, non-Hodgkin’s lymphoma, multiple myeloma and leukaemia. These associations, which do not appear to be explained by bias or confounding, highlight the importance of early life exposures in the aetiology of cancer. The mechanisms underlying the height-cancer associations are not known but height may act as a surrogate for genetic and other biological processes or as a proxy for environmental factors associated with risk, with the latter acting at, or accumulating through, different stages of life (i.e. prenatal period to adolescence). Clarification of these mechanisms will be challenging, but it will provide additional insights about the pathogenesis of cancer and possibly also novel avenues for prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mirra AP, Cole P, MacMahon B. Breast cancer in an area of high parity: Sao Paulo, Brazil. Cancer Res. 1971;31(2):77–83.

    CAS  PubMed  Google Scholar 

  2. de Waard F, Baanders-van Halewijn EA. A prospective study in general practice on breast-cancer risk in postmenopausal women. Int J Cancer. 1974;14(2):153–60.

    Article  PubMed  Google Scholar 

  3. Valaoras VG, MacMahon B, Trichopoulos D, Polychronopoulou A. Lactation and reproductive histories of breast cancer patients in greater Athens, 1965-67. Int J Cancer. 1969;4(3):350–63.

    Article  CAS  PubMed  Google Scholar 

  4. Soini I. Risk factors of breast cancer in Finland. Int J Epidemiol. 1977;6(4):365–73.

    Article  CAS  PubMed  Google Scholar 

  5. Hirayama T. Epidemiology of breast cancer with special reference to the role of diet. Prev Med. 1978;7(2):173–95.

    Article  CAS  PubMed  Google Scholar 

  6. Hancock BW, Mosely R, Coup AJ. Height and Hodgkin’s disease. Lancet. 1976;2(7999):1364.

    Article  CAS  PubMed  Google Scholar 

  7. Albanes D, Jones DY, Schatzkin A, Micozzi MS, Taylor PR. Adult stature and risk of cancer. Cancer Res. 1988;48(6):1658–62.

    CAS  PubMed  Google Scholar 

  8. Green J, Cairns BJ, Casabonne D, Wright FL, Reeves G, Beral V, et al. Height and cancer incidence in the Million Women Study: prospective cohort, and meta-analysis of prospective studies of height and total cancer risk. Lancet Oncol. 2011;12(8):785–94.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tulinius H, Sigfusson N, Sigvaldason H, Bjarnadottir K, Tryggvadottir L. Risk factors for malignant diseases: a cohort study on a population of 22,946 Icelanders. Cancer Epidemiol Biomarkers Prev. 1997;6(11):863–73.

    CAS  PubMed  Google Scholar 

  10. Hebert PR, Ajani U, Cook NR, Lee IM, Chan KS, Hennekens CH. Adult height and incidence of cancer in male physicians (United States). Cancer Causes Control. 1997;8(4):591–7.

    Article  CAS  PubMed  Google Scholar 

  11. Giovannucci E, Rimm EB, Liu Y, Willett WC. Height, predictors of C-peptide and cancer risk in men. Int J Epidemiol. 2004;33(1):217–25.

    Article  PubMed  Google Scholar 

  12. Sung J, Song YM, Lawlor DA, Smith GD, Ebrahim S. Height and site-specific cancer risk: a cohort study of a korean adult population. Am J Epidemiol. 2009;170(1):53–64.

    Article  PubMed  Google Scholar 

  13. Kabat GC, Anderson ML, Heo M, Hosgood 3rd HD, Kamensky V, Bea JW, et al. Adult stature and risk of cancer at different anatomic sites in a cohort of postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2013;22(8):1353–63.

    Article  CAS  PubMed  Google Scholar 

  14. Kabat GC, Heo M, Kamensky V, Miller AB, Rohan TE. Adult height in relation to risk of cancer in a cohort of Canadian women. Int J Cancer. 2013;132(5):1125–32.

    Article  CAS  PubMed  Google Scholar 

  15. Wiren S, Haggstrom C, Ulmer H, Manjer J, Bjorge T, Nagel G, et al. Pooled cohort study on height and risk of cancer and cancer death. Cancer Causes Control. 2014;25(2):151–9.

    Article  PubMed  Google Scholar 

  16. Kabat GC, Kim MY, Hollenbeck AR, Rohan TE. Attained height, sex, and risk of cancer at different anatomic sites in the NIH-AARP diet and health study. Cancer Causes Control. 2014;25(12):1697–706.

    Article  PubMed  Google Scholar 

  17. Lee CM, Barzi F, Woodward M, Batty GD, Giles GG, Wong JW, et al. Adult height and the risks of cardiovascular disease and major causes of death in the Asia-Pacific region: 21,000 deaths in 510,000 men and women. Int J Epidemiol. 2009;38(4):1060–71.

    Article  PubMed  Google Scholar 

  18. Batty GD, Barzi F, Woodward M, Jamrozik K, Woo J, Kim HC, et al. Adult height and cancer mortality in Asia: the Asia pacific cohort studies collaboration. Ann Oncol. 2010;21(3):646–54.

    Article  CAS  PubMed  Google Scholar 

  19. Wang N, Zhang X, Xiang YB, Yang G, Li HL, Gao J, et al. Associations of adult height and its components with mortality: a report from cohort studies of 135,000 Chinese women and men. Int J Epidemiol. 2011;40(6):1715–26.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jousilahti P, Tuomilehto J, Vartiainen E, Eriksson J, Puska P. Relation of adult height to cause-specific and total mortality: a prospective follow-up study of 31,199 middle-aged men and women in Finland. Am J Epidemiol. 2000;151(11):1112–20.

    Article  CAS  PubMed  Google Scholar 

  21. Okasha M, McCarron P, McEwen J, Smith GD. Height and cancer mortality: results from the Glasgow University student cohort. Public Health. 2000;114(6):451–5.

    CAS  PubMed  Google Scholar 

  22. Davey Smith G, Hart C, Upton M, Hole D, Gillis C, Watt G, et al. Height and risk of death among men and women: aetiological implications of associations with cardiorespiratory disease and cancer mortality. J Epidemiol Community Health. 2000;54(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  23. Batty GD, Shipley MJ, Langenberg C, Marmot MG, Davey Smith G. Adult height in relation to mortality from 14 cancer sites in men in London (UK): evidence from the original Whitehall study. Ann Oncol. 2006;17(1):157–66.

    Article  CAS  PubMed  Google Scholar 

  24. Emerging Risk Factors C. Adult height and the risk of cause-specific death and vascular morbidity in 1 million people: individual participant meta-analysis. Int J Epidemiol. 2012;41(5):1419–33.

    Article  Google Scholar 

  25. Aune D, Vieira AR, Chan DS, Navarro Rosenblatt DA, Vieira R, Greenwood DC, et al. Height and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Cancer Causes Control. 2012;23(8):1213–22.

    Article  PubMed  Google Scholar 

  26. Zhang B, Shu XO, Delahanty RJ, Zeng C, Michailidou K, Bolla MK, Wang Q, Dennis J, Wen W, Long J et al: Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization. J Natl Cancer Inst 2015, 107(11). This study was the first study to use a Mendelian randomisation analysis to assess the natural (causal or otherwise) of the height-breast cancer association reported by traditional epidemiological studies.

  27. Aune D, Navarro Rosenblatt DA, Chan DS, Vingeliene S, Abar L, Vieira AR, et al. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol. 2015;26(8):1635–48.

    Article  CAS  PubMed  Google Scholar 

  28. Collaborative Group on Epidemiological Studies of Ovarian Cancer. Ovarian cancer and body size: individual participant meta-analysis including 25,157 women with ovarian cancer from 47 epidemiological studies. PLoS Med. 2012;9(4):e1001200.

    Article  PubMed Central  Google Scholar 

  29. Zuccolo L, Harris R, Gunnell D, Oliver S, Lane JA, Davis M, et al. Height and prostate cancer risk: a large nested case-control study (ProtecT) and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2325–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Engeland A, Tretli S, Akslen LA, Bjorge T. Body size and thyroid cancer in two million Norwegian men and women. Br J Cancer. 2006;95(3):366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith GD. Ebrahim S: ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.

    Article  PubMed  Google Scholar 

  32. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33(1):30–42.

    Article  PubMed  Google Scholar 

  33. Albanes D, Winick M. Are cell number and cell proliferation risk factors for cancer? J Natl Cancer Inst. 1988;80(10):772–4.

    Article  CAS  PubMed  Google Scholar 

  34. Trichopoulos D. Intrauterine environment, mammary gland mass and breast cancer risk. Breast Cancer Res. 2003;5(1):42–4.

    Article  PubMed  Google Scholar 

  35. Trichopoulos D, Lipman RD. Mammary gland mass and breast cancer risk. Epidemiology. 1992;3(6):523–6.

    Article  CAS  PubMed  Google Scholar 

  36. Capittini C, Bergamaschi P, De Silvestri A, Marchesi A, Genovese V, Romano B, et al. Birth-weight as a risk factor for cancer in adulthood: the stem cell perspective. Maturitas. 2011;69(1):91–3.

    Article  CAS  PubMed  Google Scholar 

  37. Ahrens Jr EH, Blankenhorn DH, Hirsch J. Measurement of the human intestinal length in vivo and some causes of variation. Gastroenterology. 1956;31(3):274–84.

    PubMed  Google Scholar 

  38. Walter RB, Brasky TM, Buckley SA, Potter JD, White E. Height as an explanatory factor for sex differences in human cancer. J Natl Cancer Inst. 2013;105(12):860–8. This is the first study to have ever assessed the extent to which the male excess in the risk of cancer in anatomical sites shared by the two sexes could be explained by sex differences in height.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cole TJ. The secular trend in human physical growth: a biological view. Econ Hum Biol. 2003;1(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  40. Albanes D. Total calories, body weight, and tumor incidence in mice. Cancer Res. 1987;47(8):1987–92.

    CAS  PubMed  Google Scholar 

  41. Ross MH, Bras G. Tumor incidence patterns and nutrition in the rat. J Nutr. 1965;87(3):245–60.

    CAS  PubMed  Google Scholar 

  42. Fernandes G, Chandrasekar B, Troyer DA, Venkatraman JT, Good RA. Dietary lipids and calorie restriction affect mammary tumor incidence and gene expression in mouse mammary tumor virus/v-Ha-ras transgenic mice. Proc Natl Acad Sci U S A. 1995;92(14):6494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21.

    Article  CAS  PubMed  Google Scholar 

  44. Karamanis G, Skalkidou A, Tsakonas G, Brandt L, Ekbom A, Ekselius L, et al. Cancer incidence and mortality patterns in women with anorexia nervosa. Int J Cancer. 2014;134(7):1751–7.

    Article  CAS  PubMed  Google Scholar 

  45. Michels KB, Ekbom A. Caloric restriction and incidence of breast cancer. JAMA. 2004;291(10):1226–30.

    Article  CAS  PubMed  Google Scholar 

  46. Papadopoulos FC, Pantziaras I, Lagiou P, Brandt L, Ekselius L, Ekbom A. Age at onset of anorexia nervosa and breast cancer risk. Eur J Cancer Prev. 2009;18(3):207–11.

    Article  PubMed  Google Scholar 

  47. Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jorgensen K, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab. 1994;78(3):744–52.

    CAS  PubMed  Google Scholar 

  48. Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE. The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev. 2000;21(3):215–44.

    Article  CAS  PubMed  Google Scholar 

  49. Martin RM, Holly JM, Gunnell D. Milk and linear growth: programming of the IGF-I axis and implication for health in adulthood. Nestle Nutr Workshop Ser Pediatr Program. 2011;67:79–97.

    Article  CAS  PubMed  Google Scholar 

  50. Fall CH, Pandit AN, Law CM, Yajnik CS, Clark PM, Breier B, et al. Size at birth and plasma insulin-like growth factor-1 concentrations. Arch Dis Child. 1995;73(4):287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ong K, Kratzsch J, Kiess W, Dunger D, Team AS. Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. J Clin Endocrinol Metab. 2002;87(3):1041–4.

    Article  CAS  PubMed  Google Scholar 

  52. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet. 2004;363(9418):1346–53.

    Article  CAS  PubMed  Google Scholar 

  53. Endogenous Hormones, Breast Cancer Collaborative Group, Key TJ, Appleby PN, Reeves GK, Roddam AW. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11(6):530–42.

    Article  Google Scholar 

  54. Rinaldi S, Cleveland R, Norat T, Biessy C, Rohrmann S, Linseisen J, et al. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer. 2010;126(7):1702–15.

    CAS  PubMed  Google Scholar 

  55. Rowlands MA, Gunnell D, Harris R, Vatten LJ, Holly JM, Martin RM. Circulating insulin-like growth factor peptides and prostate cancer risk: a systematic review and meta-analysis. Int J Cancer. 2009;124(10):2416–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Silventoinen K, Sammalisto S, Perola M, Boomsma DI, Cornes BK, Davis C, et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 2003;6(5):399–408.

    Article  PubMed  Google Scholar 

  57. Visscher PM, Medland SE, Ferreira MA, Morley KI, Zhu G, Cornes BK, et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2006;2(3):e41.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86. A meta-analysis of genome-wide association data from over 250,000 individuals which identified 697 genetic variants associated with adult height, and identified novel biological pathways associated with skeletal growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tripaldi R, Stuppia L, Alberti S. Human height genes and cancer. Biochim Biophys Acta. 2013;1836(1):27–41. A review of the role of height-associated genes in cancer development and progression.

    CAS  PubMed  Google Scholar 

  61. Tanner J. Foetus into man. Ware: Castlemead Publications; 1989.

    Google Scholar 

  62. Karlberg J, Jalil F, Lam B, Low L, Yeung CY. Linear growth retardation in relation to the three phases of growth. Eur J Clin Nutr. 1994;48 Suppl 1:S25–43. discussion S43-24.

    PubMed  Google Scholar 

  63. Trichopoulos D. Hypothesis: does breast cancer originate in utero? Lancet. 1990;335(8695):939–40.

    Article  CAS  PubMed  Google Scholar 

  64. Trichopoulos D. Is breast cancer initiated in utero? Epidemiology. 1990;1(2):95–6.

    Article  CAS  PubMed  Google Scholar 

  65. Trichopoulos D, Lagiou P, Adami HO. Towards an integrated model for breast cancer etiology: the crucial role of the number of mammary tissue-specific stem cells. Breast Cancer Res. 2005;7(1):13–7.

    Article  PubMed  Google Scholar 

  66. Andersson SW, Bengtsson C, Hallberg L, Lapidus L, Niklasson A, Wallgren A, et al. Cancer risk in Swedish women: the relation to size at birth. Br J Cancer. 2001;84(9):1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McCormack VA, dos Santos Silva I, Koupil I, Leon DA, Lithell HO. Birth characteristics and adult cancer incidence: Swedish cohort of over 11,000 men and women. Int J Cancer. 2005;115(4):611–7.

    Article  CAS  PubMed  Google Scholar 

  68. Ahlgren M, Wohlfahrt J, Olsen LW, Sorensen TI, Melbye M. Birth weight and risk of cancer. Cancer. 2007;110(2):412–9.

    Article  PubMed  Google Scholar 

  69. Spracklen CN, Wallace RB, Sealy-Jefferson S, Robinson JG, Freudenheim JL, Wellons MF, et al. Birth weight and subsequent risk of cancer. Cancer Epidemiol. 2014;38(5):538–43.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yang TO, Reeves GK, Green J, Beral V, Cairns BJ, Million Women Study C, et al. Birth weight and adult cancer incidence: large prospective study and meta-analysis. Ann Oncol. 2014;25(9):1836–43. This study reports findings from the largest study – the Million Women Study – to have examined, so far, associations of birthweight with risk for selected cancer sites. It also presents the results from a systematic review and meta-analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. dos Santos Silva I, De Stavola B, McCormack V. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med. 2008;5(9):e193.

    Article  PubMed Central  Google Scholar 

  72. Xue F, Michels KB. Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol. 2007;8(12):1088–100.

    Article  PubMed  Google Scholar 

  73. Park SK, Kang D, McGlynn KA, Garcia-Closas M, Kim Y, Yoo KY, et al. Intrauterine environments and breast cancer risk: meta-analysis and systematic review. Breast Cancer Res. 2008;10(1):R8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Xu X, Dailey AB, Peoples-Sheps M, Talbott EO, Li N, Roth J. Birth weight as a risk factor for breast cancer: a meta-analysis of 18 epidemiological studies. J Womens Health (Larchmt). 2009;18(8):1169–78.

    Article  Google Scholar 

  75. Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI. Growth patterns and the risk of breast cancer in women. N Engl J Med. 2004;351(16):1619–26.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou CK, Sutcliffe S, Welsh J, Mackinnon K, Kuh D, Hardy R, et al. Is birthweight associated with total and aggressive/lethal prostate cancer risks? A systematic review and meta-analysis. Br J Cancer. 2016;114(7):839–48.

    Article  CAS  PubMed  Google Scholar 

  77. Allen DS, Ellison G, dos Santos Silva I, De Stavola B, Fentiman IS. Determinants of the availability and accuracy of self-reported birthweight in middle-aged and elderly women. Am J Epidemiol. 2002;155(4):379–84.

    Article  PubMed  Google Scholar 

  78. Berkey CS, Frazier AL, Gardner JD, Colditz GA. Adolescence and breast carcinoma risk. Cancer. 1999;85(11):2400–9.

    Article  CAS  PubMed  Google Scholar 

  79. de Stavola B, dos Santos Silva I, McCormack VA, Hardy RJ, Kuh DJ, Wadsworth MEJ. Childhood growth and breast cancer. Am J Epidemiol. 2004;159(7):671–82.

    Article  PubMed  Google Scholar 

  80. Cook MB, Gamborg M, Aarestrup J, Sorensen TI, Baker JL. Childhood height and birth weight in relation to future prostate cancer risk: a cohort study based on the copenhagen school health records register. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2232–40.

    Article  PubMed  Google Scholar 

  81. Aarestrup J, Gamborg M, Cook MB, Baker JL. Childhood height increases the risk of prostate cancer mortality. Eur J Cancer. 2015;51(10):1340–5.

    Article  CAS  PubMed  Google Scholar 

  82. Kitahara CM, Gamborg M, Berrington De Gonzalez A, Sorensen TI, Baker JL. Childhood height and body mass index were associated with risk of adult thyroid cancer in a large cohort study. Cancer Res. 2014;74(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  83. Kitahara CM, Gamborg M, Rajaraman P, Sorensen TI, Baker JL. A prospective study of height and body mass index in childhood, birth weight, and risk of adult glioma over 40 years of follow-up. Am J Epidemiol. 2014;180(8):821–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gerver WJ, De Bruin R. Relationship between height, sitting height and subischial leg length in Dutch children: presentation of normal values. Acta Paediatr. 1995;84(5):532–5.

    Article  CAS  PubMed  Google Scholar 

  85. Fredriks AM, van Buuren S, van Heel WJ, Dijkman-Neerincx RH, Verloove-Vanhorick SP, Wit JM. Nationwide age references for sitting height, leg length, and sitting height/height ratio, and their diagnostic value for disproportionate growth disorders. Arch Dis Child. 2005;90(8):807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gunnell DJ, Davey Smith G, Frankel S, Nanchahal K, Braddon FE, Pemberton J, et al. Childhood leg length and adult mortality: follow up of the Carnegie (Boyd Orr) Survey of Diet and Health in Pre-war Britain. J Epidemiol Community Health. 1998;52(3):142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gunnell DJ, Smith GD, Holly JM, Frankel S. Leg length and risk of cancer in the Boyd Orr cohort. BMJ. 1998;317(7169):1350–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barker DJ, Osmond C, Golding J. Height and mortality in the counties of England and Wales. Ann Hum Biol. 1990;17(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  89. Albanes D, Taylor PR. International differences in body height and weight and their relationship to cancer incidence. Nutr Cancer. 1990;14(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  90. Jiang Y, Marshall RJ, Walpole SC, Prieto-Merino D, Liu DX, Perry JK. An international ecological study of adult height in relation to cancer incidence for 24 anatomical sites. Cancer Causes Control. 2015;26(3):493–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel dos-Santos-Silva.

Ethics declarations

Conflict of Interest

Isabel dos-Santos-Silva and Rachel Denholm declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cancer Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos-Santos-Silva, I., Denholm, R. Height and Risk of Adult Cancers: a Review. Curr Epidemiol Rep 3, 191–200 (2016). https://doi.org/10.1007/s40471-016-0084-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-016-0084-6

Keywords

Navigation