Current Epidemiology Reports

, Volume 3, Issue 2, pp 161–180 | Cite as

Racial/Ethnic Disparities in Environmental Endocrine Disrupting Chemicals and Women’s Reproductive Health Outcomes: Epidemiological Examples Across the Life Course

  • Tamarra M. James-ToddEmail author
  • Yu-Han Chiu
  • Ami R. Zota
Environmental Epidemiology (J Braun, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Environmental Epidemiology


Disparities in women’s reproductive health outcomes across the life course have been well-documented. Endocrine disrupting chemicals may be one factor driving disparities, as studies suggest exposure to certain environmental endocrine disrupting chemicals, such as certain phthalates, bisphenol A, parabens, and polybrominated diphenyl ethers, is higher in non-Whites. Yet, a limited amount of research has focused on these chemical exposures as a potential mediator of racial/ethnic differences in women’s reproductive health outcomes, such as pubertal development, fibroids, infertility, and pregnancy complications. Given that race/ethnicity is a social construct, the purpose of this review was to present the current state of the literature on racial/ethnic disparities in both environmental endocrine disrupting chemicals, as well as associations between these chemicals and selected women’s reproductive health outcomes. Our goal was to evaluate literature from populations based in the USA to (1) characterize racial/ethnic differences in environmental endocrine disrupting chemicals and (2) systematically review literature on environmental endocrine disrupting chemicals and selected women’s health outcomes in populations containing more than one racial/ethnic group. This review highlights the need for future work in determining whether higher exposures to some environmental endocrine disrupting chemicals might partly explain differences in women’s reproductive health outcomes in these higher-exposure and high-risk groups.


Race Ethnicity Endocrine disruptors Women’s health 



We would like to thank Carol Mita, the Reference & Education Services Librarian at Harvard Medical School’s Countway Library of Medicine.

Sources of Financial Support

T.J-T. was supported by the National Institute of Environmental Health Sciences (R01ES026166). A.Z. was supported by the National Institute of Environmental Health Sciences (R00ES019881). Y.-H.C. was supported by the Irene M. and Fredrick J. Stare Nutrition Education Fund.

Compliance with Ethical Standards

Conflict of Interest

Tamarra M. James-Todd, Yu-Han Chiu, and Ami R. Zota declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Dehlendorf C, Bryant AS, Huddleston HG, Jacoby VL, Fujimoto VY. Health disparities: definitions and measurements. Am J Obstet Gynecol. 2010;202(3):212–3. doi: 10.1016/j.ajog.2009.12.003.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Williams DR, Mohammed SA, Leavell J, Collins C. Race, socioeconomic status, and health: complexities, ongoing challenges, and research opportunities. Ann N Y Acad Sci. 2010;1186:69–101. doi: 10.1111/j.1749-6632.2009.05339.x.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Williams DR. Race and health: basic questions, emerging directions. Ann Epidemiol. 1997;7(5):322–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Braveman P, Egerter S, Williams DR. The social determinants of health: coming of age. Annu Rev Public Health. 2011;32:381–98. doi: 10.1146/annurev-publhealth-031210-101218.PubMedCrossRefGoogle Scholar
  5. 5.
    Lu MC, Halfon N. Racial and ethnic disparities in birth outcomes: a life-course perspective. Matern Child Health J. 2003;7(1):13–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Bryant AS, Worjoloh A, Caughey AB, Washington AE. Racial/ethnic disparities in obstetric outcomes and care: prevalence and determinants. Am J Obstet Gynecol. 2010;202(4):335–43. doi: 10.1016/j.ajog.2009.10.864.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Dominguez TP. Race, racism, and racial disparities in adverse birth outcomes. Clin Obstet Gynecol. 2008;51(2):360–70. doi: 10.1097/GRF.0b013e31816f28de.PubMedCrossRefGoogle Scholar
  8. 8.
    Lin SS, Kelsey JL. Use of race and ethnicity in epidemiologic research: concepts, methodological issues, and suggestions for research. Epidemiol Rev. 2000;22(2):187–202.PubMedCrossRefGoogle Scholar
  9. 9.
    Duty SM, Ackerman RM, Calafat AM, Hauser R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ Health Perspect. 2005;113(11):1530–5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    James-Todd T, Senie R, Terry MB. Racial/ethnic differences in hormonally-active hair product use: a plausible risk factor for health disparities. J Immigr Minor Health. 2012;14(3):506–11. doi: 10.1007/s10903-011-9482-5.PubMedCrossRefGoogle Scholar
  11. 11.
    James-Todd T, Terry MB, Rich-Edwards J, Deierlein A, Senie R. Childhood hair product use and earlier age at menarche in a racially diverse study population: a pilot study. Ann Epidemiol. 2011;21(6):461–5. doi: 10.1016/j.annepidem.2011.01.009.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Branch F, Woodruff TJ, Mitro SD, Zota AR. Vaginal douching and racial/ethnic disparities in phthalates exposures among reproductive-aged women: National Health and Nutrition Examination Survey 2001–2004. Environ Health Global Access Scie Source. 2015;14:57. doi: 10.1186/s12940-015-0043-6.Google Scholar
  13. 13.
    Block JP, Scribner RA, DeSalvo KB. Fast food, race/ethnicity, and income: a geographic analysis. Am J Prev Med. 2004;27(3):211–7. doi: 10.1016/j.amepre.2004.06.007.PubMedGoogle Scholar
  14. 14.
    Pereira MA, Kartashov AI, Ebbeling CB, Van Horn L, Slattery ML, Jacobs Jr DR, et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet. 2005;365(9453):36–42. doi: 10.1016/S0140-6736(04)17663-0.PubMedCrossRefGoogle Scholar
  15. 15.
    Nelson MC, Gordon-Larsen P, Song Y, Popkin BM. Built and social environments associations with adolescent overweight and activity. Am J Prev Med. 2006;31(2):109–17. doi: 10.1016/j.amepre.2006.03.026.PubMedCrossRefGoogle Scholar
  16. 16.
    Ye X, Wong LY, Zhou X, Calafat AM. Urinary concentrations of 2,4-dichlorophenol and 2,5-dichlorophenol in the U.S. population (National Health and Nutrition Examination Survey, 2003–2010): trends and predictors. Environ Health Perspect. 2014;122(4):351–5. doi: 10.1289/ehp.1306816.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sjodin A, Wong LY, Jones RS, Park A, Zhang Y, Hodge C, et al. Serum concentrations of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyl (PBB) in the United States population: 2003–2004. Environ Sci Technol. 2008;42(4):1377–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Hicken MT, Gee GC, Morenoff J, Connell CM, Snow RC, Hu H. A novel look at racial health disparities: the interaction between social disadvantage and environmental health. Am J Public Health. 2012;102(12):2344–51. doi: 10.2105/AJPH.2012.300774.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gee GC, Payne-Sturges DC. Environmental health disparities: a framework integrating psychosocial and environmental concepts. Environ Health Perspect. 2004;112(17):1645–53.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    National Institute of Environmental Health Sciences. 2012–2017 Strategic Plan: advancing science, improving health: a plan for environmental health research. U.S. Department of Health and Human Services, National Institutes of Health. NIH No. 12–7935. Accessed February 4, 2016 2016.
  21. 21.
    US EPA (Environmental Protection Agency). Phthalates Action Plan (Revised) 2012.Google Scholar
  22. 22.
    Kelley KE, Hernandez-Diaz S, Chaplin EL, Hauser R, Mitchell AA. Identification of phthalates in medications and dietary supplement formulations in the United States and Canada. Environ Health Perspect. 2012;120(3):379–84. doi: 10.1289/ehp.1103998.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Koniecki D, Wang R, Moody RP, Zhu J. Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environ Res. 2011;111(3):329–36. doi: 10.1016/j.envres.2011.01.013.PubMedCrossRefGoogle Scholar
  24. 24.
    Stringer R, Labunska I, Santillo D, Johnston P, Siddorn J, Stephenson A. Concentrations of phthalate esters and identification of other additives in PVC children’s toys. Environ Sci Pollut Res Int. 2000;7(1):27–36. doi: 10.1065/espr199910.007.PubMedCrossRefGoogle Scholar
  25. 25.
    Schecter A, Lorber M, Guo Y, Wu Q, Yun SH, Kannan K, et al. Phthalate concentrations and dietary exposure from food purchased in New York State. Environ Health Perspect. 2013;121(4):473–94. doi: 10.1289/ehp.1206367.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zota AR, Calafat AM, Woodruff TJ. Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001–2010. Environ Health Perspect. 2014;122(3):235–41. doi: 10.1289/ehp.1306681.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kobrosly RW, Parlett LE, Stahlhut RW, Barrett ES, Swan SH. Socioeconomic factors and phthalate metabolite concentrations among United States women of reproductive age. Environ Res. 2012;115:11–7. doi: 10.1016/j.envres.2012.03.008.PubMedCrossRefGoogle Scholar
  28. 28.
    Weuve J, Hauser R, Calafat AM, Missmer SA, Wise LA. Association of exposure to phthalates with endometriosis and uterine leiomyomata: findings from NHANES, 1999–2004. Environ Health Perspect. 2010;118(6):825–32. doi: 10.1289/ehp.0901543.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    James-Todd TM, Meeker JD, Huang T, Hauser R, Seely EW, Ferguson KK, et al. Racial and ethnic variations in phthalate metabolite concentration changes across full-term pregnancies. J Expo Sci Environ Epidemiol. 2016. doi: 10.1038/jes.2016.2.PubMedGoogle Scholar
  30. 30.
    Serrano SE, Karr CJ, Seixas NS, Nguyen RH, Barrett ES, Janssen S, et al. Dietary phthalate exposure in pregnant women and the impact of consumer practices. Int J Environ Res Public Health. 2014;11(6):6193–215. doi: 10.3390/ijerph110606193.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wolff MS, Teitelbaum SL, Pinney SM, Windham G, Liao L, Biro F, et al. Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118(7):1039–46.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wolff MS, Teitelbaum SL, McGovern K, Windham GC, Pinney SM, Galvez M, et al. Phthalate exposure and pubertal development in a longitudinal study of US girls. Human Reprod (Oxford Engl). 2014;29(7):1558–66. doi: 10.1093/humrep/deu081.CrossRefGoogle Scholar
  33. 33.•
    Werner EF, Braun JM, Yolton K, Khoury JC, Lanphear BP. The association between maternal urinary phthalate concentrations and blood pressure in pregnancy: the HOME Study. Environl Health Global Access Scie Source. 2015;14:75. doi: 10.1186/s12940-015-0062-3. This study is among the first to publish on urinary phthalate metabolites and blood pressure in pregnancy, with implications for pregnancy-induced hypertension. With a large proportion of the population being non-White, this study provides an opportunity to further explore racial/ethnic differences in EDC exposures and their contribution to disparities in blood pressure-related outcomes in pregnancy. Google Scholar
  34. 34.
    Meeker JD, Sathyanarayana S, Swan SH. Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc B-Biol Sci. 2009;364(1526):2097–113. doi: 10.1098/rstb.2008.0268.CrossRefGoogle Scholar
  35. 35.
    Meeker JD, Cantonwine DE, Rivera-Gonzalez LO, Ferguson KK, Mukherjee B, Calafat AM, et al. Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico. Environ Sci Technol. 2013;47(7):3439–47. doi: 10.1021/es400510g.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Larsson K, Bjorklund KL, Palm B, Wennberg M, Kaj L, Lindh CH, et al. Exposure determinants of phthalates, parabens, bisphenol A and triclosan in Swedish mothers and their children. Environ Int. 2014;73:323–33. doi: 10.1016/j.envint.2014.08.014.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116(1):39–44. doi: 10.1289/ehp.10753.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mortensen ME, Calafat AM, Ye X, Wong LY, Wright DJ, Pirkle JL, et al. Urinary concentrations of environmental phenols in pregnant women in a pilot study of the National Children’s Study. Environ Res. 2014;129:32–8. doi: 10.1016/j.envres.2013.12.004.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Philippat C, Wolff MS, Calafat AM, Ye X, Bausell R, Meadows M, et al. Prenatal exposure to environmental phenols: concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environ Health Perspect. 2013;121(10):1225–31. doi: 10.1289/ehp.1206335.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Braun JM, Kalkbrenner AE, Calafat AM, Bernert JT, Ye X, Silva MJ, et al. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Perspect. 2011;119(1):131–7. doi: 10.1289/ehp.1002366.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    McGuinn LA, Ghazarian AA, Joseph Su L, Ellison GL. Urinary bisphenol A and age at menarche among adolescent girls: evidence from NHANES 2003–2010. Environ Res. 2015;136:381–6. doi: 10.1016/j.envres.2014.10.037.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Unal ER, Lynn T, Neidich J, Salazar D, Goetzl L, Baatz JE, et al. Racial disparity in maternal and fetal-cord bisphenol A concentrations. J Perinatol Off J Calif Perinat Assoc. 2012;32(11):844–50. doi: 10.1038/jp.2012.12.CrossRefGoogle Scholar
  43. 43.
    Braun JM, Lanphear BP, Calafat AM, Deria S, Khoury J, Howe CJ, et al. Early-life bisphenol a exposure and child body mass index: a prospective cohort study. Environ Health Perspect. 2014;122(11):1239–45. doi: 10.1289/ehp.1408258.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Veiga-Lopez A, Kannan K, Liao C, Ye W, Domino SE, Padmanabhan V. Gender-specific effects on gestational length and birth weight by early pregnancy BPA exposure. J Clin Endocrinol Metab. 2015; 100(11):E1394-E403.Google Scholar
  45. 45.
    Bloom MS, Kim D, Vom Saal FS, Taylor JA, Cheng G, Lamb JD, et al. Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil Steril. 2011;96(3):672–7 e2. doi: 10.1016/j.fertnstert.2011.06.063.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Robledo C, Peck JD, Stoner JA, Carabin H, Cowan L, Koch HM, et al. Is bisphenol-A exposure during pregnancy associated with blood glucose levels or diagnosis of gestational diabetes? J Toxicol Environ Health A Curr Issues. 2013;76(14):865–73.CrossRefGoogle Scholar
  47. 47.
    Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens in the U.S. population: NHANES 2005–2006. Environ Health Perspect. 2010;118(5):679–85. doi: 10.1289/ehp.0901560.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Buttke DE, Sircar K, Martin C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003–2008). Environ Health Perspect. 2012;120(11):1613–8. doi: 10.1289/ehp.1104748.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ranjit N, Siefert K, Padmanabhan V. Bisphenol-A and disparities in birth outcomes: a review and directions for future research. J Perinatol Off J Calif Perinat Assoc. 2010;30(1):2–9. doi: 10.1038/jp.2009.90.CrossRefGoogle Scholar
  50. 50.
    Zota AR, Linderholm L, Park JS, Petreas M, Guo T, Privalsky ML, et al. Temporal comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the serum of second trimester pregnant women recruited from San Francisco General Hospital, California. Environ Sci Technol. 2013;47(20):11776–84. doi: 10.1021/es402204y.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chen A, Chung E, DeFranco EA, Pinney SM, Dietrich KN. Serum PBDEs and age at menarche in adolescent girls: analysis of the National Health and Nutrition Examination Survey 2003–2004. Environ Res. 2011;111(6):831–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Windham GC, Pinney SM, Sjodin A, Lum R, Jones RS, Needham LL, et al. Body burdens of brominated flame retardants and other persistent organo-halogenated compounds and their descriptors in US girls. Environ Res. 2010;110(3):251–7. doi: 10.1016/j.envres.2010.01.004.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Vuong AM, Webster GM, Romano ME, Braun JM, Zoeller RT, Hoofnagle AN, et al. Maternal polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the HOME Study, Cincinnati. USA Environ Health Perspect. 2015;123(10):1079–85. doi: 10.1289/ehp.1408996.PubMedGoogle Scholar
  54. 54.
    Liu R, Nelson DO, Hurley S, Petreas MX, Park J, Wang Y, et al. Association between serum polybrominated diphenylether levels and residential proximity to solid waste facilities. Environ Sci Technol. 2016. doi: 10.1021/acs.est.5b04715.Google Scholar
  55. 55.
    Whitehead TP, Crispo Smith S, Park JS, Petreas MX, Rappaport SM, Metayer C. Concentrations of persistent organic pollutants in California children’s whole blood and residential dust. Environ Sci Technol. 2015;49(15):9331–40. doi: 10.1021/acs.est.5b02078.PubMedCrossRefGoogle Scholar
  56. 56.
    Zota AR, Adamkiewicz G, Morello-Frosch RA. Are PBDEs an environmental equity concern? Exposure disparities by socioeconomic status. Environ Sci Technol. 2010;44(15):5691–2. doi: 10.1021/es101723d.PubMedCrossRefGoogle Scholar
  57. 57.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342. doi: 10.1210/er.2009-0002.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Phthalates and cumulative risk assessment: the tasks ahead. Washington (DC) 2008.Google Scholar
  59. 59.
    Gomez E, Pillon A, Fenet H, Rosain D, Duchesne MJ, Nicolas JC, et al. Estrogenic activity of cosmetic components in reporter cell lines: parabens, UV screens, and musks. J Toxicol Environ Health A. 2005;68(4):239–51. doi: 10.1080/15287390590895054.PubMedCrossRefGoogle Scholar
  60. 60.
    Okubo T, Yokoyama Y, Kano K, Kano I. ER-dependent estrogenic activity of parabens assessed by proliferation of human breast cancer MCF-7 cells and expression of ERalpha and PR. Food Chem Toxicol. 2001;39(12):1225–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Howdeshell KL, Wilson VS, Furr J, Lambright CR, Rider CV, Blystone CR, et al. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the Sprague–Dawley rat in a cumulative, dose-additive manner. Toxicol Sci. 2008;105(1):153–65. doi: 10.1093/toxsci/kfn077.PubMedCrossRefGoogle Scholar
  62. 62.
    Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, et al. Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Perspect. 2014;122(8):775–86. doi: 10.1289/ehp.1307728.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Miller MD, Crofton KM, Rice DC, Zoeller RT. Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect. 2009;117(7):1033–41. doi: 10.1289/ehp.0800247.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Meerts IA, van Zanden JJ, Luijks EA, van Leeuwen-Bol I, Marsh G, Jakobsson E, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000;56(1):95–104.PubMedCrossRefGoogle Scholar
  65. 65.
    Stoker TE, Cooper RL, Lambright CS, Wilson VS, Furr J, Gray LE. In vivo and in vitro anti-androgenic effects of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture. Toxicol Appl Pharmacol. 2005;207(1):78–88. doi: 10.1016/j.taap.2005.05.010.PubMedCrossRefGoogle Scholar
  66. 66.
    Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MH, Andersson PL, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci. 2006;92(1):157–73. doi: 10.1093/toxsci/kfj187.PubMedCrossRefGoogle Scholar
  67. 67.
    Hou L, Wang D, Baccarelli A. Environmental chemicals and microRNAs. Mutat Res. 2011;714(1–2):105–12. doi: 10.1016/j.mrfmmm.2011.05.004.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    LaRocca J, Binder AM, McElrath TF, Michels KB. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ Health Perspect. 2016;124(3):380–7. doi: 10.1289/ehp.1408409.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ferguson KK, McElrath TF, Chen YH, Mukherjee B, Meeker JD. Urinary phthalate metabolites and biomarkers of oxidative stress in pregnant women: a repeated measures analysis. Environ Health Perspect. 2015;123(3):210–6. doi: 10.1289/ehp.1307996.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Euling SY, Herman-Giddens ME, Lee PA, Selevan SG, Juul A, Sorensen TI, et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics. 2008;121 Suppl 3:S172–91. doi: 10.1542/peds.2007-1813D.PubMedCrossRefGoogle Scholar
  71. 71.
    Lomenick JP, Calafat AM, Melguizo Castro MS, Mier R, Stenger P, Foster MB, et al. Phthalate exposure and precocious puberty in females. J Pediatr. 2010;156(2):221–5. doi: 10.1016/j.jpeds.2009.09.047.PubMedCrossRefGoogle Scholar
  72. 72.
    Rais-Bahrami K, Nunez S, Revenis ME, Luban NL, Short BL. Follow-up study of adolescents exposed to di(2-ethylhexyl) phthalate (DEHP) as neonates on extracorporeal membrane oxygenation (ECMO) support. Environ Health Perspect. 2004;112(13):1339–40.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.•
    Windham GC, Pinney SM, Voss RW, Sjodin A, Biro FM, Greenspan LC, et al. Brominated flame retardants and other persistent organohalogenated compounds in relation to timing of puberty in a longitudinal study of girls. Environ Health Perspect. 2015;123(10):1046–52. doi: 10.1289/ehp.1408778. This prospective study was important to our review, as it was conducted in a large, multi-racial/ethnic study population, noting racial/ethnic differences in exposure patterns. This diverse study population coupled with assessment of exposures and outcomes that are racially/ethnically patterned enable further assessment of racial/ethnic disparities in this area of research. PubMedPubMedCentralGoogle Scholar
  74. 74.
    Wolff MS, Britton JA, Boguski L, Hochman S, Maloney N, Serra N, et al. Environmental exposures and puberty in inner-city girls. Environ Res. 2008;107(3):393–400.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.•
    Wolff MS, Teitelbaum SL, McGovern K, Pinney SM, Windham GC, Galvez M, et al. Environmental phenols and pubertal development in girls. Environ Int. 2015;84:174–80. doi: 10.1016/j.envint.2015.08.008. This prospective study was designed to have a racially/ethnically diverse study population that allows for assessment of multiple pubertal outcomes. As one of the more recent studies published from this cohort, it provides important information about racial/ethnic differences in the exposure and outcome, which is critical for future analyses evaluating EDCs’ contribution to racial/ethnic disparities in these outcomes. PubMedCrossRefGoogle Scholar
  76. 76.
    Jacoby VL, Fujimoto VY, Giudice LC, Kuppermann M, Washington AE. Racial and ethnic disparities in benign gynecologic conditions and associated surgeries. Am J Obstet Gynecol. 2010;202(6):514–21. doi: 10.1016/j.ajog.2010.02.039.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188(1):100–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Kjerulff KH, Langenberg P, Seidman JD, Stolley PD, Guzinski GM. Uterine leiomyomas. Racial differences in severity, symptoms and age at diagnosis. J Reprod Med. 1996;41(7):483–90.PubMedGoogle Scholar
  79. 79.
    Pollack AZ, Buck Louis GM, Chen Z, Sun L, Trabert B, Guo Y, et al. Bisphenol A, benzophenone-type ultraviolet filters, and phthalates in relation to uterine leiomyoma. Environ Res. 2015;137:101–7. doi: 10.1016/j.envres.2014.06.028.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Thoma ME, McLain AC, Louis JF, King RB, Trumble AC, Sundaram R, et al. Prevalence of infertility in the United States as estimated by the current duration approach and a traditional constructed approach. Fertil Steril. 2013;99(5):1324–31 e1. doi: 10.1016/j.fertnstert.2012.11.037.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chandra A, Copen CE, Stephen EH. Infertility and impaired fecundity in the United States, 1982–2010: data from the National Survey of Family Growth. Natl Health Stat Rep. 2013;(67):1–18, 1 p following 9.Google Scholar
  82. 82.
    Seifer DB, Frazier LM, Grainger DA. Disparity in assisted reproductive technologies outcomes in black women compared with white women. Fertil Steril. 2008;90(5):1701–10. doi: 10.1016/j.fertnstert.2007.08.024.PubMedCrossRefGoogle Scholar
  83. 83.
    McCarthy-Keith DM, Schisterman EF, Robinson RD, O’Leary K, Lucidi RS, Armstrong AY. Will decreasing assisted reproduction technology costs improve utilization and outcomes among minority women? Fertil Steril. 2010;94(7):2587–9. doi: 10.1016/j.fertnstert.2010.02.021.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mok-Lin E, Ehrlich S, Williams PL, Petrozza J, Wright DL, Calafat AM, et al. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int J Androl. 2010;33(2):385–93. doi: 10.1111/j.1365-2605.2009.01014.x.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Harley KG, Marks AR, Chevrier J, Bradman A, Sjodin A, Eskenazi B. PBDE concentrations in women’s serum and fecundability. Environ Health Perspect. 2010;118(5):699–704. doi: 10.1289/ehp.0901450.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fujimoto VY, Kim D, Vom Saal FS, Lamb JD, Taylor JA, Bloom MS. Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril. 2011;95(5):1816–9. doi: 10.1016/j.fertnstert.2010.11.008.PubMedCrossRefGoogle Scholar
  87. 87.
    Johnson PI, Altshul L, Cramer DW, Missmer SA, Hauser R, Meeker JD. Serum and follicular fluid concentrations of polybrominated diphenyl ethers and in-vitro fertilization outcome. Environ Int. 2012;45:9–14. doi: 10.1016/j.envint.2012.04.004.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ehrlich S, Williams PL, Missmer SA, Flaws JA, Berry KF, Calafat AM, et al. Urinary bisphenol A concentrations and implantation failure among women undergoing in vitro fertilization. Environ Health Perspect. 2012;120(7):978–83. doi: 10.1289/ehp.1104307.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Souter I, Smith KW, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, et al. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod Toxicol (Elmsford NY). 2013;42:224–31. doi: 10.1016/j.reprotox.2013.09.008.CrossRefGoogle Scholar
  90. 90.
    Smith KW, Souter I, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, et al. Urinary paraben concentrations and ovarian aging among women from a fertility center. Environ Health Perspect. 2013;121(11–12):1299–305. doi: 10.1289/ehp.1205350.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Messerlian C, Souter I, Gaskins AJ, Williams PL, Ford JB, Chiu YH, et al. Urinary phthalate metabolites and ovarian reserve among women seeking infertility care. Hum Reprod (Oxfor Engl). 2015. 10.1093/humrep/dev292.Google Scholar
  92. 92.
    Buck Louis GM, Sundaram R, Schisterman EF, Sweeney AM, Lynch CD, Gore-Langton RE, et al. Persistent environmental pollutants and couple fecundity: the LIFE study. Environ Health Perspect. 2013;121(2):231–6. doi: 10.1289/ehp.1205301.PubMedGoogle Scholar
  93. 93.
    Buck Louis GM, Sundaram R, Sweeney AM, Schisterman EF, Maisog J, Kannan K. Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) study. Fertil Steril. 2014;101(5):1359–66. doi: 10.1016/j.fertnstert.2014.01.022.PubMedCrossRefGoogle Scholar
  94. 94.
    Lathi RB, Liebert CA, Brookfield KF, Taylor JA, vom Saal FS, Fujimoto VY, et al. Conjugated bisphenol A in maternal serum in relation to miscarriage risk. Fertil Steril. 2014;102(1):123–8. doi: 10.1016/j.fertnstert.2014.03.024.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hauser R, Gaskins AJ, Souter I, Smith KW, Dodge LE, Ehrlich S, et al. Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing fertilization: results from the EARTH study. Environ Health Perspect. 2015. doi: 10.1289/ehp.1509760.Google Scholar
  96. 96.
    Minguez-Alarcon L, Gaskins AJ, Chiu YH, Williams PL, Ehrlich S, Chavarro JE, et al. Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic. Hum Reprod (Oxford Engl). 2015;30(9):2120–8. doi: 10.1093/humrep/dev183.CrossRefGoogle Scholar
  97. 97.
    Minguez-Alarcon L, Chiu YH, Messerlian C, Williams PL, Sabatini ME, Toth TL, et al. Urinary paraben concentrations and in vitro fertilization outcomes among women from a fertility clinic. Fertil Steril. 2015. doi: 10.1016/j.fertnstert.2015.11.021.PubMedCentralGoogle Scholar
  98. 98.
    Alur S, Wang H, Hoeger K, Swan SH, Sathyanarayana S, Redmon BJ, et al. Urinary phthalate metabolite concentrations in relation to history of infertility and use of assisted reproductive technology. Fertil Steril. 2015;104(5):1227–35. doi: 10.1016/j.fertnstert.2015.07.1150.PubMedCrossRefGoogle Scholar
  99. 99.
    Jukic AM, Calafat AM, McConnaughey DR, Longnecker MP, Hoppin JA, Weinberg CR, et al. Urinary concentrations of phthalate metabolites and bisphenol A and associations with follicular-phase length, luteal-phase length, fecundability, and early pregnancy loss. Environ Health Perspect. 2015. doi: 10.1289/ehp.1408164.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116(8):1092–7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Adibi JJ, Hauser R, Williams PL, Whyatt RM, Calafat AM, Nelson H, et al. Maternal urinary metabolites of di-(2-ethylhexyl) phthalate in relation to the timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol. 2009;169(8):1015–24.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Whyatt RM, Adibi JJ, Calafat AM, Camann DE, Rauh V, Bhat HK, et al. Prenatal di(2-ethylhexyl)phthalate exposure and length of gestation among an inner-city cohort. Pediatrics. 2009;124(6):e1213–20. doi: 10.1542/peds.2009-0325.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Patel CJ, Yang T, Hu Z, Wen Q, Sung J, El-Sayed YY, et al. Investigation of maternal environmental exposures in association with self-reported preterm birth. Reprod Toxicol. 2014;45:1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.•
    Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA Pediatr. 2014;168(1):61–7. doi: 10.1001/jamapediatrics.2013.3699. Several studies have been published from this racially/ethnically diverse study population, evaluating an important pregnancy outcome that is racially/ethnically disparate—preterm birth. The study found certain phthalate metabolites to be associated with a higher risk of preterm birth, which could be further explored to determine whether exposure to certain phthalates contributes to racial/ethnic differences in this outcome. PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ferguson KK, McElrath TF, Ko YA, Mukherjee B, Meeker JD. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ Int. 2014;70:118–24.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Robledo CA, Peck JD, Stoner J, Calafat AM, Carabin H, Cowan L, et al. Urinary phthalate metabolite concentrations and blood glucose levels during pregnancy. Int J Hyg Environ Health. 2015;218(3):324–30. doi: 10.1016/j.ijheh.2015.01.005.PubMedCrossRefGoogle Scholar
  107. 107.
    Ferguson KK, McElrath TF, Cantonwine DE, Mukherjee B, Meeker JD. Phthalate metabolites and bisphenol-A in association with circulating angiogenic biomarkers across pregnancy. Placenta. 2015;36(6):699–703. doi: 10.1016/j.placenta.2015.04.002.PubMedCrossRefGoogle Scholar
  108. 108.
    Ferguson KK, McElrath TF, Mukherjee B, Loch-Caruso R, Meeker JD. Associations between maternal biomarkers of phthalate exposure and inflammation using repeated measurements across pregnancy. PLoS One. 2015;10(8):e0135601. doi: 10.1371/journal.pone.0135601.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cantonwine DE, Ferguson KK, Mukherjee B, McElrath TF, Meeker JD. Urinary bisphenol A levels during pregnancy and risk of preterm birth. Environ Health Perspect. 2015;123(9):895–901. doi: 10.1289/ehp.1408126.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Smarr MM, Grantz KL, Sundaram R, Maisog JM, Kannan K, Louis GM. Parental urinary biomarkers of preconception exposure to bisphenol A and phthalates in relation to birth outcomes. Environ Health. 2015;14:73. doi: 10.1186/s12940-015-0060-5.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Peltier MR, Koo HC, Getahun D, Menon R. Does exposure to flame retardants increase the risk for preterm birth? J Reprod Immunol. 2015;107:20–5. doi: 10.1016/j.jri.2014.11.002.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Smarr MM, Grantz KL, Zhang C, Sundaram R, Maisog JM, Barr DB, et al. Persistent organic pollutants and pregnancy complications. Sci Total Environ. 2016;551–552:285–91. doi: 10.1016/j.scitotenv.2016.02.030.PubMedCrossRefGoogle Scholar
  113. 113.
    Cooper AR. Persistent organic pollutants and early menopause in U.S. women. PLoS One. 2015;10(1):e0116057. doi: 10.1371/journal.pone.0116057.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Committee on Women’s Health Research, Institute of Medicine of the National Academies. Women’s health research: progress, pitfalls, and promise. Report Brief. 2010.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Tamarra M. James-Todd
    • 1
    • 2
    • 3
    Email author
  • Yu-Han Chiu
    • 3
    • 4
  • Ami R. Zota
    • 5
  1. 1.Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonUSA
  2. 2.Division of Women’s Health, Department of Medicine, Connors Center for Women’s Health and Gender BiologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA
  4. 4.Department of NutritionHarvard T.H. Chan School of Public HealthBostonUSA
  5. 5.Department of Environmental and Occupational HealthGeorge Washington University, Milken Institute School of Public HealthWashingtonUSA

Personalised recommendations