Skip to main content
Log in

Optimal cutting condition determination for milling thin-walled details

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents an approach for determining the optimal cutting condition for milling thin-walled elements with complex shapes. The approach is based on the interaction between the thin-walled detail and its periodic excitation by tooth passing, taking into account the high intermittency of such a process. The influence of the excitation frequency on the amplitude of the detail oscillation during milling was determined by simulation and experiments. It was found that the analytical results agreed with experimental data. The position of the detail when the tooth starts to cut was evaluated through experiments. The influence of this parameter on the processing state is presented herein. The processing stability is investigated and compared with the proposed approach. Thereafter, spectral analyses are conducted to determine the contribution of the vibrating frequencies to the detail behavior during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tobias SA (1965) Machine-tool vibration. Wiley, New York

    Google Scholar 

  2. Koenigsberger F, Tlusty J (1970) Structures of machine tools. Pergamon Press, Oxford

    Google Scholar 

  3. Merrit HE (1965) Theory of self-excited machine tool chatter. ASME J Eng Ind 87:447–454

    Article  Google Scholar 

  4. Week M (1985) Handbook of machine tools, vol 4. Wiley, New York

    Google Scholar 

  5. Minis IE, Magrab EB, Pandelidis IO (1990) Improved methods for the prediction of chatter in turning, part 3: a generalized linear theory. J Eng Ind 112:28–35

    Article  Google Scholar 

  6. Tlusty J (1986) Dynamics of high-speed milling. J Eng Ind 108:59–67

    Article  Google Scholar 

  7. Tlusty J, Ismail F (1983) Special aspects of chatter in milling. J Vib Acoust Stress Reliab Des 105:24–32

    Article  Google Scholar 

  8. Sridhar R, Hohn RE, Long GW (1968) A general formulation of the milling process equation: contribution to machine tool chatter research—5. J Eng Ind 90:317–324

    Article  Google Scholar 

  9. Sridhar R, Hohn RE, Long GW (1968) A stability algorithm for the general milling process: contribution to machine tool chatter research—7. J Eng Ind 90:330–334

    Article  Google Scholar 

  10. Hohn RE, Sridhar R, Long GW (1968) A stability algorithm for a special case of the milling process: contribution to machine tool chatter research—6. J Eng Ind 90:325–329

    Article  Google Scholar 

  11. Minis I, Yanushevsky R (1993) A new theoretical approach for the prediction of machine tool chatter in milling. J Eng Ind 115:1–8

    Article  Google Scholar 

  12. Altintacs Y, Lee P (1996) A general mechanics and dynamics model for helical end mills. CIRP Ann Technol 45:59–64

    Article  Google Scholar 

  13. Smith S, Tlusty J (1991) An overview of modeling and simulation of the milling process. J Eng Ind 113:169–175

    Article  Google Scholar 

  14. Budak E (1994) Mechanics and dynamics of milling thin walled structures. Dissertation, The University of British Columbia, Vancouver

    Google Scholar 

  15. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Technol 44:357–362

    Article  Google Scholar 

  16. Altintas Y, Budak E (1998) Analytical prediction of chatter stability in milling—part II: application of the general formulation to common milling systems. J Dyn Syst Meas Control 120:31–36

    Article  Google Scholar 

  17. Altintas Y, Shamoto E, Lee P et al (1999) Analytical prediction of stability lobes in ball end milling. J Manuf Sci Eng 121:586–592

    Article  Google Scholar 

  18. Altintas Y, Campoanes M (2003) An improved time domain simulation for dynamic milling at small radial immersions. J Manuf Sci Eng 125:416–422

    Article  Google Scholar 

  19. Altintas Y, Montgomery D (1991) Mechanism of cutting force and surface generation in dynamic milling. J Eng Ind 113:160–168

    Article  Google Scholar 

  20. Altintas Y, Montgomery D, Budak E (1992) Dynamic peripheral milling of flexible structures. J Eng Ind 114:137–145

    Article  Google Scholar 

  21. Arnaud L, Gonzalo O, Seguy S et al (2011) Simulation of low rigidity part machining applied to thin-walled structures. Int J Adv Manuf Technol 54:479–488

    Article  Google Scholar 

  22. Wang T, Ning H, Liang L (2010) Stability of milling of thin-walled workpiece. In: 2010 International conference on mechanic automation and control engineering (MACE), Wuhan, pp 3408–3411

  23. Davies M, Balachandran B (2000) Impact dynamics in the milling of thin-walled structures. Nonlinear Dyn 22(4):375–392

    Article  MATH  Google Scholar 

  24. Davies MA, Pratt JR, Dutterer BS et al (2002) Stability prediction for low radial immersion milling. J Manuf Sci Eng 124:217–225

    Article  Google Scholar 

  25. Davies MA, Pratt JR, Dutterer BS et al (2000) The stability of low radial immersion milling. CIRP Ann Technol 49:37–40

    Article  Google Scholar 

  26. Insperger T, Stépán G (2000) Stability of the milling process. Period Polytech Eng Mech Eng 44(1):47–57

    Google Scholar 

  27. Insperger T, Stépán G (2004) Vibration frequencies in high-speed milling processes or a positive answer to Davies, Pratt, Dutterer and Burns. J Manuf Sci Eng 126:481–487

    Article  Google Scholar 

  28. Altintas Y, Budak E (1998) Analytical prediction of chatter stability in milling—part I: general formulation. J Dyn Syst Meas Control 120:22–30

    Article  Google Scholar 

  29. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. Trans Soc Mech Eng J Manuf Sci Eng 126:459–466

    Article  Google Scholar 

  30. Schmitz T, Ziegert J (1999) Examination of surface location error due to phasing of cutter vibrations. Precis Eng 23:51–62

    Article  Google Scholar 

  31. Schmitz TL, Couey J, Marsh E et al (2007) Runout effects in milling: surface finish, surface location error, and stability. Int J Mach Tools Manuf 47:841–851

    Article  Google Scholar 

  32. Schmitz TL, Ziegert JC, Canning JS et al (2008) Case study: a comparison of error sources in high-speed milling. Precis Eng 32:126–133

    Article  Google Scholar 

  33. Schmitz TL, Mann BP (2006) Closed-form solutions for surface location error in milling. Int J Mach Tools Manuf 46:1369–1377

    Article  Google Scholar 

  34. Schmitz TL, Smith KS (2008) Machining dynamics: frequency response to improved productivity. Springer Science & Business Media, Berlin

    Google Scholar 

  35. Vnukov Y, Djadja S, Kozlova E et al (2014) Analyses of contact features of cutting tool and detail in cylindrical end milling. J Eng Sci 4:1–7

    Google Scholar 

  36. Insperger T (2010) Full-discretization and semi-discretization for milling stability prediction: some comments. Int J Mach Tools Manuf 50:658–662

    Article  Google Scholar 

  37. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge

    Google Scholar 

  38. Insperger T, Stépán G (2011) Semi-discretization for time-delay systems: stability and engineering applications. Springer, Berlin

    Book  MATH  Google Scholar 

  39. Gradišek J, Govekar E, Grabec I et al (2005) On stability prediction for low radial immersion milling. Mach Sci Technol 9:117–130

    Article  Google Scholar 

  40. Logominov V, Germashev A, Diadia S et al (2014) Testbench for study of oscillations at final milling of part cylindrical thin-walled elements. UA Patent 94974, 10 Dec 2014

  41. Vnukov Y, Germashev A, Kuchuhurov M et al (2015) Stand for investigation of workpiece oscillating process under cylindrical cutting. UA Patent 103031, 25 Nov 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Germashev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germashev, A., Logominov, V., Anpilogov, D. et al. Optimal cutting condition determination for milling thin-walled details. Adv. Manuf. 6, 280–290 (2018). https://doi.org/10.1007/s40436-018-0224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-018-0224-y

Keywords

Navigation