Advances in Manufacturing

, Volume 5, Issue 2, pp 105–119 | Cite as

State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics

Article

Abstract

Nanomaterials composed of metals and metal alloys are the most valuable components in emerging micro- and nano-electronic devices and innovations to date. The composition of these nanomaterials, their quantum chemical and physical properties, and their production methods are in critical need of summarization, so that a complete state of the art of the present and future of nanotechnologies can be presented. In this review, we report on the most recent activities and results in the fields of spintronics, nanophotonics, and nanomagnetics, with particular emphasis on metallic nanoparticles in alloys and pure metals, as well as in organic combinations and in relation to carbon-based nanostructures. This review shows that the combinatory synthesis of alloys with rare metals, such as scandium, yttrium, and rare earths imparts valuable qualities to high-magnetic-field compounds, and provides unique properties with emphasis on nanoelectronic and computational components. In this review, we also shed light on the methods of synthesis and the background of spintronic, nanomagnetic, and nanophotonic materials, with applications in optics, diagnostics, nanoelectronics, and computational nanotechnology. The review is important for the industrial development of novel materials, and for summarizing both fabrication and manufacturing methods, as well as principles and functions of metallic nanoparticles.

Keywords

Metal Alloy Nanoparticle Spintronics Nanophotonics Nanomagnetics Method Synthesis 

References

  1. 1.
    Trauzettel B, Bulaev DV, Loss D et al (2007) Spin qubits in graphene quantum dots. Nat Phys 3:192–196CrossRefGoogle Scholar
  2. 2.
    Zhu S, Zhang J, Qiao C et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860CrossRefGoogle Scholar
  3. 3.
    Pradhan A, Holloway T, Mundle R et al (2012) Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons. Appl Phys Lett 100:061127CrossRefGoogle Scholar
  4. 4.
    Park K, Lee M, Liu Y et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004CrossRefGoogle Scholar
  5. 5.
    Gittins DI, Bethell D, Schiffrin DJ et al (2000) A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408:67–69CrossRefGoogle Scholar
  6. 6.
    Huang Y, Duan X, Lieber CM (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142–147CrossRefGoogle Scholar
  7. 7.
    Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, NetherlandsCrossRefGoogle Scholar
  8. 8.
    Wolf SA, Lu J, Stan MR et al (2010) The promise of nanomagnetics and spintronics for future logic and universal memory. Proc IEEE 98:2155–2168CrossRefGoogle Scholar
  9. 9.
    Awschalom DD, Flatté ME (2007) Challenges for semiconductor spintronics. Nat Phys 3:153–159CrossRefGoogle Scholar
  10. 10.
    Wolf S, Awschalom D, Buhrman R et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495CrossRefGoogle Scholar
  11. 11.
    Mourachkine A, Yazyev O, Ducati C et al (2008) Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field. Nano Lett 8:3683–3687CrossRefGoogle Scholar
  12. 12.
    Ohtsu M, Kobayashi K, Kawazoe T et al (2002) Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quantum Electron 8:839–862CrossRefGoogle Scholar
  13. 13.
    Qian F, Li Y, Gradecak S et al (2004) Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett 4(10):1975–1979CrossRefGoogle Scholar
  14. 14.
    Žutić I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323CrossRefGoogle Scholar
  15. 15.
    Ling X, Zhou X, Shu W et al (2013) Realization of tunable photonic spin hall effect by tailoring the Pancharatnam-Berry phase. Sci Rep 5:5557Google Scholar
  16. 16.
    Thibeault SA, Kang JH, Sauti G et al (2015) Nanomaterials for radiation shielding. MRS Bull 40:836–841CrossRefGoogle Scholar
  17. 17.
    Xu X, Yao W, Xiao D et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343–350CrossRefGoogle Scholar
  18. 18.
    McAlister S (1978) The hall effect in spin glasses. J Appl Phys 49:1616–1621CrossRefGoogle Scholar
  19. 19.
    Senthil T, Marston J, Fisher MP (1999) Spin quantum hall effect in unconventional superconductors. Phys Rev B 60(6):4245–4254CrossRefGoogle Scholar
  20. 20.
    Hirsch JE (1999) Spin hall effect. Phys Rev Lett 83(9):1834–1837MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dyakonov M, Perel V (1971) Possibility of orienting electron spins with current. Sov J Exp Theor Phys Lett 13:467–469Google Scholar
  22. 22.
    Girvin SM (1999) The quantum hall effect: novel excitations and broken symmetries. In: Comtet A, Jolicoeur T, Ouvry S et al (eds) Topological aspects of low dimensional systems. Springer, Berlin, pp 53–175Google Scholar
  23. 23.
    Laughlin RB (1983) Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys Rev Lett 50:1395–1398CrossRefGoogle Scholar
  24. 24.
    Burr GW, Kurdi BN, Scott JC et al (2008) Overview of candidate device technologies for storage-class memory. IBM J Res Dev 52:449–464CrossRefGoogle Scholar
  25. 25.
    Wang KL, Alzate JG, Amiri PK (2013) Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys Appl Phys 46(7):074003CrossRefGoogle Scholar
  26. 26.
    Wang X, Keshtbod P, Wang Z et al (2015) Spin-orbitronics memory device with matching and self-reference functionality. IEEE Trans Magn 51:1–4Google Scholar
  27. 27.
    Jiang Z, Zhang Y, Tan YW et al (2007) Quantum hall effect in graphene. Solid State Commun 143(1–2):14–19CrossRefGoogle Scholar
  28. 28.
    Zibouche N, Philipsen P, Kuc A et al (2014) Transition-metal dichalcogenide bilayers: switching materials for spintronic and valleytronic applications. Phys Rev B 90:125440CrossRefGoogle Scholar
  29. 29.
    Chua C, Connolly M, Lartsev A et al (2014) Quantum hall effect and quantum point contact in bilayer-patched epitaxial graphene. Nano Lett 14:3369–3373CrossRefGoogle Scholar
  30. 30.
    Klitzing KV (1995) Physics and application of the quantum hall effect. Phys B Condens Matter 204(1–4):111–116CrossRefGoogle Scholar
  31. 31.
    Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photonics 1:303–305CrossRefGoogle Scholar
  32. 32.
    Cortes C, Newman W, Molesky S et al (2012) Quantum nanophotonics using hyperbolic metamaterials. J Opt 14(6):063001CrossRefGoogle Scholar
  33. 33.
    Shen Y, Friend CS, Jiang Y et al (2000) Nanophotonics: interactions, materials, and applications. J Phys Chem B 104:7577–7587CrossRefGoogle Scholar
  34. 34.
    Callahan DM, Munday JN, Atwater HA (2012) Solar cell light trapping beyond the ray optic limit. Nano Lett 12:214–218CrossRefGoogle Scholar
  35. 35.
    Yu Z, Raman A, Fan S (2010) Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci 107:17491–17496CrossRefGoogle Scholar
  36. 36.
    Mokkapati S, Catchpole K (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112:101101CrossRefGoogle Scholar
  37. 37.
    Teperik TV, De Abajo FG, Borisov A et al (2008) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2:299–301CrossRefGoogle Scholar
  38. 38.
    Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater 11:65–74CrossRefGoogle Scholar
  39. 39.
    Polman A (2008) Plasmonics applied. Science 322:868–869CrossRefGoogle Scholar
  40. 40.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  41. 41.
    Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photonics 6:130–132CrossRefGoogle Scholar
  42. 42.
    Delacour C, Blaize S, Grosse P et al (2010) Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. Nano Lett 10:2922–2926CrossRefGoogle Scholar
  43. 43.
    Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117CrossRefGoogle Scholar
  44. 44.
    Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(8):591Google Scholar
  45. 45.
    Ferrell T, Sharp S, Warmack R (1992) Progress in photon scanning tunneling microscopy (PSTM). Ultramicroscopy 42:408–415CrossRefGoogle Scholar
  46. 46.
    Paesler M, Moyer P, Jahncke C et al (1990) Analytical photon scanning tunneling microscopy. Phys Rev B 42:6750CrossRefGoogle Scholar
  47. 47.
    Bourillot E, Fornel FD, Goudonnet JP et al (1995) Imaging of test quartz gratings with a photon scanning tunneling microscope: experiment and theory. J Opt Soc Am A 12(8):1749–1764CrossRefGoogle Scholar
  48. 48.
    Carminati R, Greffet JJ (1995) Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. Opt Commun 116:316–321CrossRefGoogle Scholar
  49. 49.
    Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15:R841CrossRefGoogle Scholar
  50. 50.
    Saywell A, Magnano G, Satterley CJ et al (2010) Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun 1:75CrossRefGoogle Scholar
  51. 51.
    del Carmen Giménez-López M, Moro F, La Torre A et al (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407CrossRefGoogle Scholar
  52. 52.
    Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(3):198–210CrossRefGoogle Scholar
  53. 53.
    Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793CrossRefGoogle Scholar
  54. 54.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611CrossRefGoogle Scholar
  55. 55.
    Rokhvarger AE, Chigirinsky LA (2004) Design and nanofabrication of superconductor ceramic strands and customized leads. Int J Appl Ceram Technol 1:129–139CrossRefGoogle Scholar
  56. 56.
    Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRefGoogle Scholar
  57. 57.
    Welser J, Wolf SA, Avouris P et al (2011) Applications: nanoelectronics and nanomagnetics. In: Nanotechnol. Res. Dir. Soc. Needs 2020. Springer, Berlin, pp 375–415Google Scholar
  58. 58.
    Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186CrossRefGoogle Scholar
  59. 59.
    Manzetti S, Lu T (2013) Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires. RSC Adv 3:25881–25890CrossRefGoogle Scholar
  60. 60.
    Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847CrossRefGoogle Scholar
  61. 61.
    Vetrone F, Naccache R, Zamarron A et al (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254–3258CrossRefGoogle Scholar
  62. 62.
    Bünzli JCG, Comby S, Chauvin AS et al (2007) New opportunities for lanthanide luminescence. J Rare Earths 25:257–274CrossRefGoogle Scholar
  63. 63.
    Bloss W, Sham L, Vinter V (1979) Interaction-induced transition at low densities in silicon inversion layer. Phys Rev Lett 43:1529CrossRefGoogle Scholar
  64. 64.
    Cserti J, Dávid G (2006) Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys Rev B 74:172305CrossRefGoogle Scholar
  65. 65.
    Manzetti S, Patek M (2016) The accurate wavefunction of the active space of the rhenium dimer resolved using the ab initio Brueckner coupled-cluster method. Struct Chem 27(4):1071–1080CrossRefGoogle Scholar
  66. 66.
    Tulapurkar A, Suzuki Y, Fukushima A et al (2005) Spin-torque diode effect in magnetic tunnel junctions. Nature 438:339–342CrossRefGoogle Scholar
  67. 67.
    Ohno H (2010) A window on the future of spintronics. Nat Mater 9:952–954CrossRefGoogle Scholar
  68. 68.
    Locatelli N, Cros V, Grollier J (2014) Spin-torque building blocks. Nat Mater 13:11–20CrossRefGoogle Scholar
  69. 69.
    Mai C, Barrette A, Yu Y et al (2013) Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett 14:202–206CrossRefGoogle Scholar
  70. 70.
    Zeng M, Feng Y, Liang G (2011) Graphene-based spin caloritronics. Nano Lett 11:1369–1373CrossRefGoogle Scholar
  71. 71.
    Myoung N, Seo K, Lee SJ et al (2013) Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. ACS Nano 7:7021–7027CrossRefGoogle Scholar
  72. 72.
    Cheng Y, Zhu Z, Tahir M et al (2013) Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. EPL Europhys Lett 102:57001CrossRefGoogle Scholar
  73. 73.
    Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si I: formulation by extended zone effective mass theory. J Phys Soc Jpn 43:907–916CrossRefGoogle Scholar
  74. 74.
    Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si II: electric break through. J Phys Soc Jpn 43:917–924CrossRefGoogle Scholar
  75. 75.
    Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si III: enhancement of splittings by many-body effects. J Phys Soc Jpn 43:925–932CrossRefGoogle Scholar
  76. 76.
    Behnia K (2012) Condensed-matter physics: polarized light boosts valleytronics. Nat Nanotechnol 7:488–489CrossRefGoogle Scholar
  77. 77.
    Ezawa M (2013) Spin valleytronics in silicene: quantum spin hall-quantum anomalous hall insulators and single-valley semimetals. Phys Rev B 87:155415CrossRefGoogle Scholar
  78. 78.
    Ezawa M (2014) Valleytronics on the surface of a topological crystalline insulator: elliptic dichroism and valley-selective optical pumping. Phys Rev B 89:195413CrossRefGoogle Scholar
  79. 79.
    Nebel CE (2013) Valleytronics: electrons dance in diamond. Nat Mater 12:690–691CrossRefGoogle Scholar
  80. 80.
    Maassen J, Ji W, Guo H (2010) Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett 11:151–155CrossRefGoogle Scholar
  81. 81.
    Novoselov K, Blake P, Katsnelson M (2001) Graphene: electronic properties. Encycl Mater Sci Technol 244:1–6Google Scholar
  82. 82.
    Pronschinske A, Pedevilla P, Murphy CJ et al (2015) Enhancement of low-energy electron emission in 2D radioactive films. Nat Mater 14:904–907CrossRefGoogle Scholar
  83. 83.
    Sundaram SK, Mazur E (2002) Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1:217–224CrossRefGoogle Scholar
  84. 84.
    Sanche L (2015) Cancer treatment: low-energy electron therapy. Nat Mater 14:861–863CrossRefGoogle Scholar
  85. 85.
    Mattheiss LF (1973) Energy bands for 2H–Nb Se2 and 2H–Mo S2. Phys Rev Lett 30:784–787CrossRefGoogle Scholar
  86. 86.
    Mattheiss LF (1966) Band structure and Fermi surface for rhenium. Phys Rev 151:450–464CrossRefGoogle Scholar
  87. 87.
    Mattheiss LF (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740CrossRefGoogle Scholar
  88. 88.
    Te Velde G, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967CrossRefGoogle Scholar
  89. 89.
    Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070MATHCrossRefGoogle Scholar
  90. 90.
    Schrödinger E (1940) A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proceedings of the Royal Irish Academy, pp 9–16Google Scholar
  91. 91.
    Tahir M, Schwingenschlögl U (2013) Valley polarized quantum hall effect and topological insulator phase transitions in silicene. Sci Rep 3:1075CrossRefGoogle Scholar
  92. 92.
    Kaloni TP, Singh N, Schwingenschlögl U (2014) Prediction of a quantum anomalous hall state in Co-decorated silicene. Phys Rev B 89(3):208–220CrossRefGoogle Scholar
  93. 93.
    Liu CC, Feng W, Yao Y (2011) Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107(7):2989–2996CrossRefGoogle Scholar
  94. 94.
    Zhang XL, Liu LF, Liu WM (2013) Quantum anomalous hall effect and tunable topological states in 3D transition metals doped silicene. Sci Rep 3:2908Google Scholar
  95. 95.
    Wu G, Lue NY, Chang L (2011) Graphene quantum dots for valley-based quantum computing: a feasibility study. Phys Rev B 84:195463CrossRefGoogle Scholar
  96. 96.
    Lee MK, Lue NY, Wen CK et al (2012) Valley-based field-effect transistors in graphene. Phys Rev B 86:165411CrossRefGoogle Scholar
  97. 97.
    Macià F, Kent AD, Hoppensteadt FC (2011) Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22:95301CrossRefGoogle Scholar
  98. 98.
    Wang X, Chen Y, Xi H et al (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett 30:294–297CrossRefGoogle Scholar
  99. 99.
    Kainuma R, Imano Y, Ito W et al (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957–960CrossRefGoogle Scholar
  100. 100.
    Mañosa L, González-Alonso D, Planes A et al (2010) Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 9:478–481CrossRefGoogle Scholar
  101. 101.
    Krenke T, Duman E, Acet M et al (2005) Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 4:450–454CrossRefGoogle Scholar
  102. 102.
    Khalsa G, Stiles MD, Grollier J (2015) Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection. Appl Phys Lett 106:242402Google Scholar
  103. 103.
    Locatelli N, Mizrahi A, Accioly A et al (2014) Noise-enhanced synchronization of stochastic magnetic oscillators. Phys Rev Appl 2:034009CrossRefGoogle Scholar
  104. 104.
    Keatley P, Gangmei P, Dvornik M et al (2013) Isolating the dynamic dipolar interaction between a pair of nanoscale ferromagnetic disks. Phys Rev Lett 110:187202CrossRefGoogle Scholar
  105. 105.
    Barber D, Freestone I (1990) An investigation of the origin of the colour of the Lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33–45CrossRefGoogle Scholar
  106. 106.
    Webb JA, Bardhan R (2014) Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6:2502–2530CrossRefGoogle Scholar
  107. 107.
    Anker JN, Hall WP, Lyandres O et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  108. 108.
    Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomed 7:429–445CrossRefGoogle Scholar
  109. 109.
    Sanders M, Lin Y, Wei J et al (2014) An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron 61:95–101CrossRefGoogle Scholar
  110. 110.
    Xu LJ, Zong C, Zheng XS et al (2014) Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal Chem 86:2238–2245CrossRefGoogle Scholar
  111. 111.
    Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3CrossRefGoogle Scholar
  112. 112.
    Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1–9CrossRefGoogle Scholar
  113. 113.
    Carregal-Romero S, Ochs M, Rivera-Gil P et al (2012) NIR-light triggered delivery of macromolecules into the cytosol. J Controll Release 159:120–127CrossRefGoogle Scholar
  114. 114.
    Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRefGoogle Scholar
  115. 115.
    Lim S, Mar W, Matheu P et al (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309CrossRefGoogle Scholar
  116. 116.
    Zhang D, Yang X, Hong X et al (2015) Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt Quantum Electron 47:1421–1427CrossRefGoogle Scholar
  117. 117.
    Martín-Rodríguez R, Geitenbeek R, Meijerink A (2013) Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J Am Chem Soc 135:13668–13671CrossRefGoogle Scholar
  118. 118.
    Mukherjee P, Sloan RF, Shade CM et al (2013) A postsynthetic modification of II–VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J Phys Chem C 117:14451–14460CrossRefGoogle Scholar
  119. 119.
    Chen CJ, Haik Y, Chatterjee J (2004) Nanomagnetics in biotechnology. In: Proceedings of the international workshop on materials analysis and processing in magnetic fields, Tallahassee, Florida, 17–19 March 2004Google Scholar
  120. 120.
    Shamim N, Hong L, Hidajat K et al (2007) Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf B Biointerfaces 55:51–58CrossRefGoogle Scholar
  121. 121.
    Shamim N, Liang H, Hidajat K et al (2008) Adsorption, desorption, and conformational changes of lysozyme from thermosensitive nanomagnetic particles. J Colloid Interface Sci 320:15–21CrossRefGoogle Scholar
  122. 122.
    Horng HE, Yang SY, Huang Y et al (2005) Nanomagnetic particles for SQUID-based magnetically labeled immunoassay. IEEE Trans Appl Supercond 15:668–671CrossRefGoogle Scholar
  123. 123.
    Parekh K, Upadhyay R (2010) Static and dynamic magnetic properties of monodispersed Mn0.5Zn0.5Fe2O4 nanomagnetic particles. J Appl Phys 107:053907CrossRefGoogle Scholar
  124. 124.
    Taketomi S (1998) Spin-glass-like complex susceptibility of frozen magnetic fluids. Phys Rev E 57:3073CrossRefGoogle Scholar
  125. 125.
    Yoo SK, Lee SY (2000) Geometrical phase effects in biaxial nanomagnetic particles. Phys Rev B 62:5713–5718CrossRefGoogle Scholar
  126. 126.
    Chakraverty S, Ghosh B, Kumar S et al (2006) Magnetic coding in systems of nanomagnetic particles. Appl Phys Lett 88:042501CrossRefGoogle Scholar
  127. 127.
    Miller J, Kropf A, Zha Y et al (2006) The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J Catal 240:222–234CrossRefGoogle Scholar
  128. 128.
    Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRefGoogle Scholar
  129. 129.
    El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264CrossRefGoogle Scholar
  130. 130.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  131. 131.
    Sreeprasad T, Nguyen P, Kim N et al (2013) Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett 13:4434–4441CrossRefGoogle Scholar
  132. 132.
    Gawande MB, Shelke SN, Zboril R et al (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348CrossRefGoogle Scholar
  133. 133.
    Komarneni S, Li D, Newalkar B et al (2002) Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18:5959–5962CrossRefGoogle Scholar
  134. 134.
    Zhao Y, Zhu J, Hong J et al (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 2004:4072–4080CrossRefGoogle Scholar
  135. 135.
    Cheng W, Cheng HW (2009) Synthesis and characterization of cobalt nano-particles through microwave polyol process. AIChE J 55:1383–1389CrossRefGoogle Scholar
  136. 136.
    Komarneni S, Roy R, Li Q (1992) Microwave-hydrothermal synthesis of ceramic powders. Mater Res Bull 27:1393–1405CrossRefGoogle Scholar
  137. 137.
    Gao F, Lu Q, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860CrossRefGoogle Scholar
  138. 138.
    Manzetti S (2017) NANOGEL: Synthesis of cadmium nanoparticles from a carefully selected ionic liquid of Cd2+ and benzoic acid. www.fjordforsk.no/nanogel.php
  139. 139.
    Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027CrossRefGoogle Scholar
  140. 140.
    Grzelczak M, Pérez-Juste J, Mulvaney P et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRefGoogle Scholar
  141. 141.
    Yin B, Ma H, Wang S et al (2003) Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B 107:8898–8904CrossRefGoogle Scholar
  142. 142.
    Guo D, Li H (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6:999–1003CrossRefGoogle Scholar
  143. 143.
    Manzetti S, Andersen O, Garcia C et al (2016) Molecular simulation of carbon nanotubes as sorptive materials: sorption effects towards retene, perylene and cholesterol to 100 degrees Celsius and above. Mol Simul 14:1–10Google Scholar
  144. 144.
    Manzetti S (2012) Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review. Handb Polycycl Aromat Hydrocarb Chem Occur Health Issues 309–330Google Scholar
  145. 145.
    Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688CrossRefGoogle Scholar
  146. 146.
    Xing G, Wang D, Cheng CJ et al (2013) Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl Phys Lett 103:022402CrossRefGoogle Scholar
  147. 147.
    Dutta DP, Mandal BP, Naik R et al (2013) Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J Phys Chem C 117:2382–2389CrossRefGoogle Scholar
  148. 148.
    Ghosh S, Yang R, Kaumeyer M et al (2014) Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing. ACS Appl Mater Interfaces 6:3099–3104CrossRefGoogle Scholar
  149. 149.
    Chen D, Yu Y, Huang F et al (2010) Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J Am Chem Soc 132:9976–9978CrossRefGoogle Scholar
  150. 150.
    Yang Y, Jin Y, He H et al (2010) Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc 132:13381–13394CrossRefGoogle Scholar
  151. 151.
    Pal S, Bhunia A, Jana PP et al (2015) Microporous La–metal–organic framework (MOF) with large surface area. Chem Eur J 21:2789–2792CrossRefGoogle Scholar
  152. 152.
    Dey R, Bhattacharya B, Pachfule P et al (2014) Flexible dicarboxylate based pillar-layer metal organic frameworks: differences in structure and porosity by tuning the pyridyl based N, N′ linkers. Cryst Eng Commun 16:2305–2316CrossRefGoogle Scholar
  153. 153.
    Liu BH, Ding J, Zhong Z et al (2002) Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chem Phys Lett 358:96–102CrossRefGoogle Scholar
  154. 154.
    Lowndes DH, Rouleau CM, Thundat T et al (1998) Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: size distributions and nanoscale structure. Appl Surf Sci 127:355–361CrossRefGoogle Scholar
  155. 155.
    Mafuné F, Kohno J, Takeda Y et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117CrossRefGoogle Scholar
  156. 156.
    Mafuné F, Kohno J, Takeda Y et al (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337CrossRefGoogle Scholar
  157. 157.
    Becker MF, Brock JR, Cai H et al (1998) Nanoparticles generated by laser ablation. Conf Lasers Electro-Opt 10(5):151–152Google Scholar
  158. 158.
    Sen P, Ghosh J, Abdullah A et al (2003) Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci 115:499–508CrossRefGoogle Scholar
  159. 159.
    Andrievski R (2003) Modern nanoparticle research in Russia. J Nanoparticle Res 5:415–418CrossRefGoogle Scholar
  160. 160.
    Goswami N, Sen P (2004) Water-induced stabilization of ZnS nanoparticles. Solid State Commun 132:791–794CrossRefGoogle Scholar
  161. 161.
    Phillips J, Perry WL, Kroenke WJ (2004) Method for producing metallic nanoparticles. U.S. Patent No. 6,689,192, 10 February 2004Google Scholar
  162. 162.
    Bica I (1999) Nanoparticle production by plasma. Mater Sci Eng B 68:5–9CrossRefGoogle Scholar
  163. 163.
    Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133CrossRefGoogle Scholar
  164. 164.
    Kaneko T, Hatakeyama R, Takahashi S (2013) Plasma process on ionic liquid substrate for morphology controlled nanoparticles. INTECH Open Access Publisher. Chapter 24Google Scholar
  165. 165.
    Graneau P (1983) First indication of Ampere tension in solid electric conductors. Phys Lett A 97:253–255CrossRefGoogle Scholar
  166. 166.
    Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821CrossRefGoogle Scholar
  167. 167.
    Sajti CL, Sattari R, Chichkov BN et al (2010) Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J Phys Chem C 114:2421–2427CrossRefGoogle Scholar
  168. 168.
    Abdolvand A, Khan SZ, Yuan Y et al (2008) Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser. Appl Phys A 91:365–368CrossRefGoogle Scholar
  169. 169.
    Wang X, Shephard JD, Dear FC et al (2008) Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J Am Ceram Soc 91:391–397CrossRefGoogle Scholar
  170. 170.
    Borysiuk J, Grabias A, Szczytko J et al (2008) Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 46:1693–1701CrossRefGoogle Scholar
  171. 171.
    Scott JHJ, Majetich SA (1995) Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys Rev B 52:12564–12571CrossRefGoogle Scholar
  172. 172.
    Delaunay JJ, Hayashi T, Tomita M et al (1997) CoPt-C nanogranular magnetic thin films. Appl Phys Lett 71:3427–3429CrossRefGoogle Scholar
  173. 173.
    Li T, Yan H, Wang H et al (2005) CoPt/C nanogranular magnetic thin film. Int J Mod Phys B 19:2261–2271CrossRefGoogle Scholar
  174. 174.
    Lu Y, Zhu Z, Liu Z (2005) Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43:369–374CrossRefGoogle Scholar
  175. 175.
    Hayashi T, Hirono S, Tomita M et al (1997) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Cambridge University Press, Cambridge, p 33Google Scholar
  176. 176.
    Harris P, Tsang S (1998) A simple technique for the synthesis of filled carbon nanoparticles. Chem Phys Lett 293:53–58CrossRefGoogle Scholar
  177. 177.
    Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35:637–659CrossRefGoogle Scholar
  178. 178.
    Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  179. 179.
    Shankar SS, Ahmad A, Pasricha R et al (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  180. 180.
    Yang X, Li Q, Wang H et al (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanoparticle Res 12:1589–1598CrossRefGoogle Scholar
  181. 181.
    Huang J, Lin L, Li Q et al (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47:6081–6090CrossRefGoogle Scholar
  182. 182.
    Sharma B, Purkayastha DD, Hazra S et al (2014) Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 116:94–97CrossRefGoogle Scholar
  183. 183.
    Kumar B, Smita K, Cumbal L (2016) Biofabrication of nanogold from the flower extracts of Lantana camara. IET Nanobiotechnol 10:154–157CrossRefGoogle Scholar
  184. 184.
    Paul B, Bhuyan B, Purkayastha DD et al (2015) Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett 148:37–40CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Fjordforsk A/S, NanoFactory, MidtunVangsnesNorway
  2. 2.Computational Biology and BioinformaticsUppsala UniversityUppsalaSweden
  3. 3.Historical Museum of Physics and Research and Study Center Enrico FermiRomeItaly
  4. 4.Division of Materials Science, Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden
  5. 5.Department of Molecular and Nanosystems SciencesUniversity of Ca ‘Foscari VeniceMestre, VenetiaItaly
  6. 6.Institute of Photonics and Nanotechnologies, CSMFO Lab. & FBK-CMMIFN-CNRPovo, TrentoItaly

Personalised recommendations