Abstract
Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generate strong atomic bonded areas. Critical brittle intermetallic phases can be avoided due to the absence of external heat. These features attract the notice of industries performing large scale productions of dissimilar metal joints, like automotive and plant engineering. The most important issue is to guarantee a proper weld quality. Numerical simulations are often used to predict the welding result a priori. Nevertheless, experiments and the measurement of process parameters are needed for the validation of these data. Sensors nearby the joining zone are exposed to high pressures and intense magnetic fields which hinder the evaluation of the electrical output signals. In this paper, existing analysis tools for process development and quality assurance in MPW are reviewed. New methods for the process monitoring and weld characterization during and after MPW are introduced, which help to overcome the mentioned drawbacks of established technologies. These methods are based on optical and mechanical measuring technologies taking advantage of the hypervelocity impact flash, the impact pressure and the deformation necessary for the weld formation.
Similar content being viewed by others
References
Lysenko D, Ermolaev V, Dudin A (1970) Methods of pressure welding. US 3520049
Bellmann J, Lueg-Althoff J, Goebel G et al (2016) Effects of surface coatings on the joint formation during magnetic pulse welding in tube-to-cylinder configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 279–288
Botros K, Groves T (1980) Fundamental impact welding parameters: an experimental investigation using a 76-mm powder cannon. J Appl Phys 51(7):3706–3714
Groche P, Wagner M, Pabst C et al (2014) Development of a novel test rig to investigate the fundamentals of impact welding. J Mater Process Technol 214(10):2009–2017
Cuq-Lelandais J, Ferreira S, Avrillaud G et al (2014) Magnetic pulse welding: welding windows and high velocity impact simulations. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming, p 199–206
Geyer M, Rebensdorf A, Boehm S (2014) Influence of the boundary layer in magnetic pulse sheet welds of aluminium to steel. In: Huh H, Tekkaya AE (eds) Proceedings of the international conference on high speed forming, p 51–60
Gafri O, Izhar A, Livshitz Y et al (2006) Magnetic pulse acceleration. In: Kleiner M (ed) Proceedings of the 2nd international conference on high speed forming, p 33–40
Shribman V (2008) Magnetic pulse welding for dissimilar and similar materials. In: Kleiner M, Tekkaya AE (eds) Proceedings of the 3rd international conference on high speed forming, p 13–22
Mori K, Bay N, Fratini L et al (2013) Joining by plastic deformation. CIRP Ann Manuf Technol 62(2):673–694
Groche P, Wohletz S, Brenneis M et al (2014) Joining by forming: a review on joint mechanisms, applications and future trends. J Mater Process Technol 214(10):1972–1994
Kapil A, Sharma A (2015) Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique. J Clean Prod 100:35–58
Power Electronic Measurements Ltd. (2002) CWT current probe—application notes. http://pemuk.com/products/cwt-current-probe/cwt.aspx. Accessed 10 May 2016
Dietz H, Lippmann H (1969) Messung der magnetischen Induktion in einer Magneform-Kompressionsspule. Elektrotech Z 90(3):51–54
Bauer D (1967) Ein neuartiges Messverfahren zur Bestimmung der Kraefte, Arbeiten, Formaenderungen, Formaenderungsgeschwindigkeiten und Formaenderungsfestigkeiten beim Aufweiten zylindrischer Werkstuecke durch schnellveraenderliche magnetische Felder, Dr.-Ing.-Dissertation, Technische Hochschule Hannover, Hannover
Beerwald C (2004) Grundlagen der Prozessauslegung und -gestaltung bei der elektromagnetischen Umformung. Dissertation, Technische Universitaet Dortmund
Veenaas S, Vollertsen F, Krueger M et al (2016) Determination of forming speed at a laser shock stretch drawing process. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming 2016, p 105–114
Strand OT, Goosman DR, Martinez C et al (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77:83108
Barker LM, Hollenbach RE (1972) Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys 43(11):4669–4675
Goosman DR (1996) The multibeam Fabry-Pérot velocimeter: efficient measurement of high velocities. Sci Technol Rev (7):12–19
Zhang Y, L’Eplattenier P, Taber G et al (2008) Numerical simulation and experimental study for magnetic pulse welding process on AA6061-T6 and Cu101 sheet. In: The 10th international LS-DYNA users conference, Dearborn
Jaeger A, Tekkaya AE (2012) Online measurement of the radial workpiece displacement in electromagnetic forming subsequent to hot aluminum extrusion. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 13–22
Winkler R (1973) Hochgeschwindigkeitsbearbeitung: Grundlagen und technische Anwendung elektrisch erzeugter Schockwellen und Impulsmagnetfelder. VEB Verlag Technik, Berlin
Watanabe M, Kumai S, Hagimoto G et al (2009) Interfacial microstructure of aluminium/metallic glass lap joints fabricated by magnetic pulse welding. Mater Trans 50(6):1279–1285
Rebensdorf A, Boehm S (2016) Increase of the reproducibility of joints welded with magnetic pulse technology using graded surface topographies. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 125–136
Pabst C, Groche P (2014) Electromagnetic pulse welding: process insights by high speed imaging and numerical simulation. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming 2014, p 77–88
Poynton WA, Travis FW, Johnson W (1968) The free radial expansion of thin cylindrical brass tubes using explosive gas mixtures. Int J Mech Sci 10:385–401
Stern A, Becher O, Nahmany M et al (2015) Jet composition in magnetic pulse welding: Al-Al and Al-Mg couples. Weld J 94:257–284
Kakizaki S, Watanabe M, Kumaji S (2011) Simulation and experimental analysis of metal jet emission and weld interface morphology in impact welding. Mater Trans 52(5):1003–1008
Bergmann OR (1984) The scientific basis of metal bonding with explosives. In: The 8th international ASME conference on high energy rate fabrication 1984, p 197–202
Friichtenicht JF, Slattery JC (1963) Ionization associated with hypervelocity impact. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 591–612
Eichhorn G (1976) Analysis of the hypervelocity impact process from impact flash measurements. Planet Space Sci 24(8):771–781
Lueg-Althoff J, Schilling B, Bellmann J et al (2016) Influence of the wall thicknesses on the joint quality during magnetic pulse welding in tube-to-tube configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 259–268
Pond RB, Mombley C, Glass CM (1963) Energy balances in hypervelocity penetration. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 401–419
Hill R (1950) The mathematical theory of plasticity. Clarendon Press, Oxford
Lorenz A, Lueg-Althoff J, Bellmann J et al (2016) Workpiece positioning during magnetic pulse welding of aluminum-steel joints. Weld J 95(3):101–109
Sutton MA, Schreier HW, Orteu JJ (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York
Erlenmaier W, Kappes J, Tatarczyk A et al (2014) Efficient punching using integrated flattening. In: Liewald M (ed) Neuere Entwicklungen in der Blechumformung. Fellbach, p 81–97
Hokari H, Sato T, Kawauchi K et al (1998) Magnetic impulse welding of aluminium tube and copper tube with various core materials. Weld Int 12(8):619–626
DIN Deutsches Institut fuer Normung e.V. (2013) Welding and allied processes—classification of geometric imperfections in metallic materials—Part 2: welding with pressure (DIN EN ISO 6520)
DIN Deutsches Institut fuer Normung e.V. (1982) Testing of sandwiches; climbing drum peel test (DIN 53295)
DIN Deutsches Institut fuer Normung e.V. (1979) Testing of adhesives for metals and adhesively bonded metal joints; test specimens; manufacturing (DIN 53281)
Broeckhove J, Willemsens L (2010) Experimental research on magnetic pulse welding of dissimilar metals. Master Thesis, Universitaet Gent
Raoelison RN, Rachik M, Buiron N et al (2012) Assessment of gap and charging voltage influence on mechanical behaviour of joints obtained by magnetic pulse welding. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 207–216
Sharafiev S, Wagner MF, Pabst C et al (2016) Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints. In: Lampke T, Wagner G, Wagner M (eds) Tagungsband zum 18. Werkstofftechnischen Kolloqium, p 294–298
Ben-Artzy A, Stern A, Frage N et al (2008) Interface phenomena in aluminium-magnesium magnetic pulse welding. Sci Technol Weld Join 13(4):402–408
Ben-Artzy A, Stern A, Frage N et al (2010) Wave formation mechanism in magnetic pulse welding. Int J Impact Eng. doi:10.1016/j.ijimpeng.2009.07.008
Raoelison RN, Sapanathan T, Buiron N et al (2015) Magnetic pulse welding of Al/Al and Al/Cu metal pairs: consequences of the dissimilar combination on the interfacial behavior during the welding process. J Manuf Process 20:112–127
Goebel G, Kaspar J, Herrmannsdoerfer T et al (2010) Insights into intermetallic phases on pulse welded dissimilar metal joints. In: Babusci K, Daehn G, Marré M et al (eds) Proceedings of the 4th international conference on high speed forming 2010, p 127–136
Tekkaya AE (2000) An improved relationship between Vickers hardness and yield stress for cold formed materials and its experimental verification. Ann CIRP 49(1):205–208
Zhang Y, Babu S, Prothe C et al (2010) Application of high velocity impact welding at varied different length scales. J Mater Process Technol. doi:10.1016/j.jmatprotec.2010.01.001
Kore SD, Date PP, Kulkarni SV et al (2011) Application of electromagnetic impact technique for welding copper-to-stainless steel sheets. Int J Adv Manuf Technol 54:949–955
Bmax (2016) Magnetic pulse welding—the ultimate solution for driveshaft manufacturers. Accessed 2 March 2016
Hahn M, Weddeling C, Lueg-Althoff J et al (2016) Analytical approach for magnetic pulse welding of sheet connections. J Mater Process Technol 230:131–142
DIN Deutsches Institut fuer Normung e.V. (1978) Testing of plated steels; determination of shearing strength between cladding material and base material in shearing test (DIN 50162)
Barreiro P, Schulze V, Loehe D et al (2006) Strength of tubular joints made by electromagnetic compression at quasistatic and cyclic loading. In: Kleiner M (ed) Proceedings of the 2nd international conference: ICHSF 2006
Fahrenwaldt HJ, Schuler V, Twrdek J (2014) Praxiswissen Schweißtechnik: Werkstoffe, Prozesse, Fertigung, 5th edn. Springer Vieweg, Wiesbaden
Shaw RE (2002) Ultrasonic testing procedures, technician skills, and qualifications. J Mater Civ Eng 14(1):62–67
Hellier C (2013) Handbook of nondestructive evaluation, 2nd edn. McGraw-Hill, New York
Santos TG, Sorger G, Vilaça P et al (2014) A non-conventional technique for evaluating welded joints based on the electrical conductivity. Key Eng Mater 611–612:671–676
Acknowledgements
This work is based on the results of Subproject A1 of the Priority Program 1640 (“joining by plastic deformation”); the authors would like to thank the Deutsche Forschungs gemeinschaft (DFG) for its financial support. Furthermore, the authors would like to thank “Bmax” (Toulouse, France) for preparing the samples for the torsion tests and “Telegaertner Geraetebau GmbH” (Hoeckendorf, Germany) for providing the fiberoptic components. Joerg Bellmann was supported by Deutsche Forschungsgemeinschaft through Grant No. BE 1875/30-2. Joern Lueg-Althoff was supported by Deutsche Forschungsgemeinschaft through Grant No. TE 508/39-2.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bellmann, J., Lueg-Althoff, J., Schulze, S. et al. Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies. Adv. Manuf. 4, 322–339 (2016). https://doi.org/10.1007/s40436-016-0162-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40436-016-0162-5