Advances in Manufacturing

, Volume 4, Issue 4, pp 322–339 | Cite as

Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies

  • J. Bellmann
  • J. Lueg-Althoff
  • S. Schulze
  • S. Gies
  • E. Beyer
  • A. E. Tekkaya
Article

Abstract

Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generate strong atomic bonded areas. Critical brittle intermetallic phases can be avoided due to the absence of external heat. These features attract the notice of industries performing large scale productions of dissimilar metal joints, like automotive and plant engineering. The most important issue is to guarantee a proper weld quality. Numerical simulations are often used to predict the welding result a priori. Nevertheless, experiments and the measurement of process parameters are needed for the validation of these data. Sensors nearby the joining zone are exposed to high pressures and intense magnetic fields which hinder the evaluation of the electrical output signals. In this paper, existing analysis tools for process development and quality assurance in MPW are reviewed. New methods for the process monitoring and weld characterization during and after MPW are introduced, which help to overcome the mentioned drawbacks of established technologies. These methods are based on optical and mechanical measuring technologies taking advantage of the hypervelocity impact flash, the impact pressure and the deformation necessary for the weld formation.

Keywords

Magnetic pulse welding (MPW) Process monitoring Collision conditions Dissimilar metal joining Materials testing 

References

  1. 1.
    Lysenko D, Ermolaev V, Dudin A (1970) Methods of pressure welding. US 3520049Google Scholar
  2. 2.
    Bellmann J, Lueg-Althoff J, Goebel G et al (2016) Effects of surface coatings on the joint formation during magnetic pulse welding in tube-to-cylinder configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 279–288Google Scholar
  3. 3.
    Botros K, Groves T (1980) Fundamental impact welding parameters: an experimental investigation using a 76-mm powder cannon. J Appl Phys 51(7):3706–3714CrossRefGoogle Scholar
  4. 4.
    Groche P, Wagner M, Pabst C et al (2014) Development of a novel test rig to investigate the fundamentals of impact welding. J Mater Process Technol 214(10):2009–2017CrossRefGoogle Scholar
  5. 5.
    Cuq-Lelandais J, Ferreira S, Avrillaud G et al (2014) Magnetic pulse welding: welding windows and high velocity impact simulations. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming, p 199–206Google Scholar
  6. 6.
    Geyer M, Rebensdorf A, Boehm S (2014) Influence of the boundary layer in magnetic pulse sheet welds of aluminium to steel. In: Huh H, Tekkaya AE (eds) Proceedings of the international conference on high speed forming, p 51–60Google Scholar
  7. 7.
    Gafri O, Izhar A, Livshitz Y et al (2006) Magnetic pulse acceleration. In: Kleiner M (ed) Proceedings of the 2nd international conference on high speed forming, p 33–40Google Scholar
  8. 8.
    Shribman V (2008) Magnetic pulse welding for dissimilar and similar materials. In: Kleiner M, Tekkaya AE (eds) Proceedings of the 3rd international conference on high speed forming, p 13–22Google Scholar
  9. 9.
    Mori K, Bay N, Fratini L et al (2013) Joining by plastic deformation. CIRP Ann Manuf Technol 62(2):673–694CrossRefGoogle Scholar
  10. 10.
    Groche P, Wohletz S, Brenneis M et al (2014) Joining by forming: a review on joint mechanisms, applications and future trends. J Mater Process Technol 214(10):1972–1994CrossRefGoogle Scholar
  11. 11.
    Kapil A, Sharma A (2015) Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique. J Clean Prod 100:35–58CrossRefGoogle Scholar
  12. 12.
    Power Electronic Measurements Ltd. (2002) CWT current probe—application notes. http://pemuk.com/products/cwt-current-probe/cwt.aspx. Accessed 10 May 2016
  13. 13.
    Dietz H, Lippmann H (1969) Messung der magnetischen Induktion in einer Magneform-Kompressionsspule. Elektrotech Z 90(3):51–54Google Scholar
  14. 14.
    Bauer D (1967) Ein neuartiges Messverfahren zur Bestimmung der Kraefte, Arbeiten, Formaenderungen, Formaenderungsgeschwindigkeiten und Formaenderungsfestigkeiten beim Aufweiten zylindrischer Werkstuecke durch schnellveraenderliche magnetische Felder, Dr.-Ing.-Dissertation, Technische Hochschule Hannover, HannoverGoogle Scholar
  15. 15.
    Beerwald C (2004) Grundlagen der Prozessauslegung und -gestaltung bei der elektromagnetischen Umformung. Dissertation, Technische Universitaet DortmundGoogle Scholar
  16. 16.
    Veenaas S, Vollertsen F, Krueger M et al (2016) Determination of forming speed at a laser shock stretch drawing process. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming 2016, p 105–114Google Scholar
  17. 17.
    Strand OT, Goosman DR, Martinez C et al (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77:83108CrossRefGoogle Scholar
  18. 18.
    Barker LM, Hollenbach RE (1972) Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys 43(11):4669–4675CrossRefGoogle Scholar
  19. 19.
    Goosman DR (1996) The multibeam Fabry-Pérot velocimeter: efficient measurement of high velocities. Sci Technol Rev (7):12–19Google Scholar
  20. 20.
    Zhang Y, L’Eplattenier P, Taber G et al (2008) Numerical simulation and experimental study for magnetic pulse welding process on AA6061-T6 and Cu101 sheet. In: The 10th international LS-DYNA users conference, DearbornGoogle Scholar
  21. 21.
    Jaeger A, Tekkaya AE (2012) Online measurement of the radial workpiece displacement in electromagnetic forming subsequent to hot aluminum extrusion. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 13–22Google Scholar
  22. 22.
    Winkler R (1973) Hochgeschwindigkeitsbearbeitung: Grundlagen und technische Anwendung elektrisch erzeugter Schockwellen und Impulsmagnetfelder. VEB Verlag Technik, BerlinGoogle Scholar
  23. 23.
    Watanabe M, Kumai S, Hagimoto G et al (2009) Interfacial microstructure of aluminium/metallic glass lap joints fabricated by magnetic pulse welding. Mater Trans 50(6):1279–1285Google Scholar
  24. 24.
    Rebensdorf A, Boehm S (2016) Increase of the reproducibility of joints welded with magnetic pulse technology using graded surface topographies. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 125–136Google Scholar
  25. 25.
    Pabst C, Groche P (2014) Electromagnetic pulse welding: process insights by high speed imaging and numerical simulation. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming 2014, p 77–88Google Scholar
  26. 26.
    Poynton WA, Travis FW, Johnson W (1968) The free radial expansion of thin cylindrical brass tubes using explosive gas mixtures. Int J Mech Sci 10:385–401CrossRefGoogle Scholar
  27. 27.
    Stern A, Becher O, Nahmany M et al (2015) Jet composition in magnetic pulse welding: Al-Al and Al-Mg couples. Weld J 94:257–284Google Scholar
  28. 28.
    Kakizaki S, Watanabe M, Kumaji S (2011) Simulation and experimental analysis of metal jet emission and weld interface morphology in impact welding. Mater Trans 52(5):1003–1008CrossRefGoogle Scholar
  29. 29.
    Bergmann OR (1984) The scientific basis of metal bonding with explosives. In: The 8th international ASME conference on high energy rate fabrication 1984, p 197–202Google Scholar
  30. 30.
    Friichtenicht JF, Slattery JC (1963) Ionization associated with hypervelocity impact. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 591–612Google Scholar
  31. 31.
    Eichhorn G (1976) Analysis of the hypervelocity impact process from impact flash measurements. Planet Space Sci 24(8):771–781CrossRefGoogle Scholar
  32. 32.
    Lueg-Althoff J, Schilling B, Bellmann J et al (2016) Influence of the wall thicknesses on the joint quality during magnetic pulse welding in tube-to-tube configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 259–268Google Scholar
  33. 33.
    Pond RB, Mombley C, Glass CM (1963) Energy balances in hypervelocity penetration. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 401–419Google Scholar
  34. 34.
    Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATHGoogle Scholar
  35. 35.
    Lorenz A, Lueg-Althoff J, Bellmann J et al (2016) Workpiece positioning during magnetic pulse welding of aluminum-steel joints. Weld J 95(3):101–109Google Scholar
  36. 36.
    Sutton MA, Schreier HW, Orteu JJ (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New YorkGoogle Scholar
  37. 37.
    Erlenmaier W, Kappes J, Tatarczyk A et al (2014) Efficient punching using integrated flattening. In: Liewald M (ed) Neuere Entwicklungen in der Blechumformung. Fellbach, p 81–97Google Scholar
  38. 38.
    Hokari H, Sato T, Kawauchi K et al (1998) Magnetic impulse welding of aluminium tube and copper tube with various core materials. Weld Int 12(8):619–626CrossRefGoogle Scholar
  39. 39.
    DIN Deutsches Institut fuer Normung e.V. (2013) Welding and allied processes—classification of geometric imperfections in metallic materials—Part 2: welding with pressure (DIN EN ISO 6520)Google Scholar
  40. 40.
    DIN Deutsches Institut fuer Normung e.V. (1982) Testing of sandwiches; climbing drum peel test (DIN 53295)Google Scholar
  41. 41.
    DIN Deutsches Institut fuer Normung e.V. (1979) Testing of adhesives for metals and adhesively bonded metal joints; test specimens; manufacturing (DIN 53281)Google Scholar
  42. 42.
    Broeckhove J, Willemsens L (2010) Experimental research on magnetic pulse welding of dissimilar metals. Master Thesis, Universitaet GentGoogle Scholar
  43. 43.
    Raoelison RN, Rachik M, Buiron N et al (2012) Assessment of gap and charging voltage influence on mechanical behaviour of joints obtained by magnetic pulse welding. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 207–216Google Scholar
  44. 44.
    Sharafiev S, Wagner MF, Pabst C et al (2016) Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints. In: Lampke T, Wagner G, Wagner M (eds) Tagungsband zum 18. Werkstofftechnischen Kolloqium, p 294–298Google Scholar
  45. 45.
    Ben-Artzy A, Stern A, Frage N et al (2008) Interface phenomena in aluminium-magnesium magnetic pulse welding. Sci Technol Weld Join 13(4):402–408CrossRefGoogle Scholar
  46. 46.
    Ben-Artzy A, Stern A, Frage N et al (2010) Wave formation mechanism in magnetic pulse welding. Int J Impact Eng. doi:10.1016/j.ijimpeng.2009.07.008
  47. 47.
    Raoelison RN, Sapanathan T, Buiron N et al (2015) Magnetic pulse welding of Al/Al and Al/Cu metal pairs: consequences of the dissimilar combination on the interfacial behavior during the welding process. J Manuf Process 20:112–127CrossRefGoogle Scholar
  48. 48.
    Goebel G, Kaspar J, Herrmannsdoerfer T et al (2010) Insights into intermetallic phases on pulse welded dissimilar metal joints. In: Babusci K, Daehn G, Marré M et al (eds) Proceedings of the 4th international conference on high speed forming 2010, p 127–136Google Scholar
  49. 49.
    Tekkaya AE (2000) An improved relationship between Vickers hardness and yield stress for cold formed materials and its experimental verification. Ann CIRP 49(1):205–208CrossRefGoogle Scholar
  50. 50.
    Zhang Y, Babu S, Prothe C et al (2010) Application of high velocity impact welding at varied different length scales. J Mater Process Technol. doi:10.1016/j.jmatprotec.2010.01.001 Google Scholar
  51. 51.
    Kore SD, Date PP, Kulkarni SV et al (2011) Application of electromagnetic impact technique for welding copper-to-stainless steel sheets. Int J Adv Manuf Technol 54:949–955CrossRefGoogle Scholar
  52. 52.
    Bmax (2016) Magnetic pulse welding—the ultimate solution for driveshaft manufacturers. Accessed 2 March 2016Google Scholar
  53. 53.
    Hahn M, Weddeling C, Lueg-Althoff J et al (2016) Analytical approach for magnetic pulse welding of sheet connections. J Mater Process Technol 230:131–142CrossRefGoogle Scholar
  54. 54.
    DIN Deutsches Institut fuer Normung e.V. (1978) Testing of plated steels; determination of shearing strength between cladding material and base material in shearing test (DIN 50162)Google Scholar
  55. 55.
    Barreiro P, Schulze V, Loehe D et al (2006) Strength of tubular joints made by electromagnetic compression at quasistatic and cyclic loading. In: Kleiner M (ed) Proceedings of the 2nd international conference: ICHSF 2006Google Scholar
  56. 56.
    Fahrenwaldt HJ, Schuler V, Twrdek J (2014) Praxiswissen Schweißtechnik: Werkstoffe, Prozesse, Fertigung, 5th edn. Springer Vieweg, WiesbadenGoogle Scholar
  57. 57.
    Shaw RE (2002) Ultrasonic testing procedures, technician skills, and qualifications. J Mater Civ Eng 14(1):62–67CrossRefGoogle Scholar
  58. 58.
    Hellier C (2013) Handbook of nondestructive evaluation, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  59. 59.
    Santos TG, Sorger G, Vilaça P et al (2014) A non-conventional technique for evaluating welded joints based on the electrical conductivity. Key Eng Mater 611–612:671–676CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Manufacturing Science and EngineeringTU DresdenDresdenGermany
  2. 2.Fraunhofer Institute for Material and Beam TechnologyDresdenGermany
  3. 3.Institute of Forming Technology and Lightweight ConstructionTU DortmundDortmundGermany

Personalised recommendations