Skip to main content
Log in

Modeling and control of power electronic interface for grid-connected solar PV system

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This work depicts modeling and analysis of two-staged power electronic interface used for grid-connected solar photovoltaic generator. The power circuit of power electronic interface comprises of a quadratic boost converter with voltage multiplier cell and \(1-\phi \) voltage source inverter. The said converter provides a higher voltage conversion ratio and lower voltage stress than other converters. The control circuit of the power electronic interface comprises of perturb and observe-based maximum power point tracking scheme with adaptive perturbation. For the dual-loop control for the grid-connected inverter, fractional-order PI controller and variable band hysteresis current controller are used. Small-signal modeling and analysis of converter and inverter configuration are provided in this work. The simulation results and experimental validation of the grid-connected system are provided in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Algorithm 2
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Dauda AK, Panda A, Mishra U (2023) Synergistic effect of complementary cleaner energy sources on controllable emission from hybrid power systems in optimal power flow framework. J Clean Prod 419:138290

    Article  Google Scholar 

  2. Panda A, Mishra U (2023) An environmental optimal power flow framework of hybrid power systems with pumped hydro storage. J Clean Prod 391:136087

    Article  Google Scholar 

  3. Pattnaik A, Dauda AK, Padhee S, Panda S, Panda A (2023) Security constrained optimal power flow solution of hybrid storage integrated cleaner power systems. Appl Therm Eng 232:121058

    Article  Google Scholar 

  4. Mahtta R, Joshi PK, Jindal AK (2014) Solar power potential mapping in India using remote sensing inputs and environmental parameters. Renew Energy 71:255–262

    Article  Google Scholar 

  5. Jhunjhunwala A, Lolla A, Kaur P (2016) Solar-dc microgrid for Indian homes: a transforming power scenario. IEEE Electrific Mag 4(2):10–19

    Article  Google Scholar 

  6. Prusty SB, Behera LR, Roy PS, Padhee S (2023) Powering up the it equipment and cooling units of cloud data centers using photovoltaic-fed microgrid. In: 2023 2nd International conference for innovation in technology (INOCON). IEEE, pp 1–5

  7. Pendem SR, Mikkili S (2018) Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses. Sol Energy 160:303–321

    Article  Google Scholar 

  8. Gupta A, Chauhan YK (2016) Detailed performance analysis of realistic solar photovoltaic systems at extensive climatic conditions. Energy 116:716–734

    Article  Google Scholar 

  9. Maghami MR, Hizam H, Gomes C, Radzi MA, Rezadad MI, Hajighorbani S (2016) Power loss due to soiling on solar panel: A review. Renew Sustain Energy Rev 59:1307–1316

    Article  Google Scholar 

  10. Ueda Y, Kurokawa K, Itou T, Kitamura K, Miyamoto Y, Yokota M, Sugihara H (2006) Performance ratio and yield analysis of grid connected clustered pv systems in japan. In: 2006 IEEE 4th world conference on photovoltaic energy conference, vol 2. IEEE, pp 2296–2299

  11. Suzuki R, Kawamura H, Yamanaka S, Kawamura H, Ohno H, Naito K (2002) Loss factors affecting power generation efficiency of a PV module. In: Conference record of the twenty-ninth IEEE photovoltaic specialists conference. IEEE, pp 1557–1560

  12. Wang MQ, Gooi HB (2011) Spinning reserve estimation in microgrids. IEEE Trans Power Syst 26(3):1164–1174

    Article  Google Scholar 

  13. Denholm P, O’Connell M, Brinkman G, Jorgenson J (2015) Overgeneration from solar energy in California. A field guide to the duck chart. Technical report. National Renewable Energy Lab.(NREL), Golden

  14. Rühle S (2016) Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol Energy 130:139–147

    Article  Google Scholar 

  15. Tsai-Fu W, Chang C-H, Lin L-C, Kuo C-L (2011) Power loss comparison of single-and two-stage grid-connected photovoltaic systems. IEEE Trans Energy Convers 26(2):707–715

    Article  Google Scholar 

  16. Mohanty M, Prakash S, Padhee S (2022) Impedance matching of photovoltaic system using dc-dc converter. In: Smart technologies for power and green energy: proceedings of STPGE 2022. Springer, pp 147–155

  17. Duran E, Piliougine M, Sidrach-de Cardona M, Galan J, Andujar JM (2008) Different methods to obtain the I–V curve of PV modules: a review. In: 2008 33rd IEEE photovoltaic specialists conference. IEEE, pp 1–6

  18. Jately V, Bhattacharya S, Azzopardi B, Montgareuil A, Joshi J, Arora S (2021) Voltage and current reference based MPPT under rapidly changing irradiance and load resistance. IEEE Trans Energy Convers 36(3):2297–2309

    Article  Google Scholar 

  19. Kulshreshtha A, Saxena AR (2018) Stability and interaction analysis of input voltage controlled converters for low voltage dc nanogrids. In: 2018 IEEE international conference on power electronics, drives and energy systems (PEDES). IEEE, pp 1–6

  20. Padhee S, Pati UC, Mahapatra K (2018) Overview of high-step-up dc–dc converters for renewable energy sources. IETE Tech Rev 35(1):99–115

    Article  Google Scholar 

  21. Panigrahi R, Mishra SK, Joshi A, Ngo KDT (2020) Dc–dc converter synthesis: an inverse problem. IEEE Trans Power Electron 35(12):12633–12638

    Article  Google Scholar 

  22. Nag SS, Panigrahi R, Mishra SK, Joshi A, Ngo KDT, Mandal S (2019) A theory to synthesize nonisolated dc–dc converters using flux balance principle. IEEE Trans Power Electron 34(11):10910–10924

    Article  Google Scholar 

  23. Padhee S, Murari R (2022) Study the effect of right-half plane zero on voltage-mode controller design for boost converter. In: Control applications in modern power systems: select proceedings of EPREC 2021. Springer, pp 95–106

  24. Padhee S, Mohanty M, Panda A (2022) Design and performance analysis of controlled dc-dc converter. In: VLSI architecture for signal, speech, and image processing. Apple Academic Press, pp 273–295

  25. Zhioua M, El Aroudi A, Belghith S, Bosque-Moncusí JM, Giral R, Al Hosani K, Al-Numay M (2016) Modeling, dynamics, bifurcation behavior and stability analysis of a dc–dc boost converter in photovoltaic systems. Int J Bifurc Chaos 26(10):1650166

    Article  MathSciNet  Google Scholar 

  26. Abusorrah A, Al-Hindawi MM, Al-Turki Y, Mandal K, Giaouris D, Banerjee S, Voutetakis S, Papadopoulou S (2013) Stability of a boost converter fed from photovoltaic source. Sol Energy 98:458–471

    Article  Google Scholar 

  27. Zhang G, Wang Z, Herbert Ho-Ching I, Chen S-Z, Ye Y, Zhang B, Zhang Y (2017) Unique modular structure of multicell high-boost converters with reduced component currents. IEEE Trans Power Electron 33(9):7795–7804

    Article  Google Scholar 

  28. Zhu B, Ding F, Vilathgamuwa DM (2019) Coat circuits for dc–dc converters to improve voltage conversion ratio. IEEE Trans Power Electron 35(4):3679–3687

    Article  Google Scholar 

  29. Andrade AMSS, Hey HL, Schuch L, da Silva Martins ML (2017) Comparative evaluation of single switch high-voltage step-up topologies based on boost and zeta PWM cells. IEEE Trans Ind Electron 65(3):2322–2334

    Article  Google Scholar 

  30. Loera-Palomo R, Morales-Salda na JA (2015) Family of quadratic step-up dc–dc converters based on non-cascading structures. IET Power Electron 8(5):793–801

    Article  Google Scholar 

  31. Wijeratne DS, Moschopoulos G (2011) Quadratic power conversion for power electronics: principles and circuits. IEEE Trans Circuits Syst I Regul Pap 59(2):426–438

    Article  MathSciNet  Google Scholar 

  32. Leyva-Ramos J, Mota-Varona R, Ortiz-Lopez MG, Diaz-Saldierna LH, Langarica-Cordoba D (2017) Control strategy of a quadratic boost converter with voltage multiplier cell for high-voltage gain. IEEE J Emerg Select Top Power Electron 5(4):1761–1770

  33. Bandyopadhyay A, Mandal K, Parui S (2020) Design-oriented dynamical analysis of single-phase h-bridge inverter. In: 2020 IEEE international conference on power electronics, smart grid and renewable energy (PESGRE2020). IEEE, pp 1–6

  34. Chowdhury MA (2016) Dual-loop h inf controller design for a grid-connected single-phase photovoltaic system. Sol Energy 139:640–649

    Article  Google Scholar 

  35. Yao Z, Xiao L (2011) Control of single-phase grid-connected inverters with nonlinear loads. IEEE Trans Ind Electron 60(4):1384–1389

    Article  Google Scholar 

  36. Dahono PA (2009) New hysteresis current controller for single-phase full-bridge inverters. IET Power Electron 2(5):585–594

    Article  Google Scholar 

  37. Ho CN-M, Cheung VSP, Shu-Hung Chung H (2009) Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control. IEEE Trans Power Electron 24(11):2484–2495

    Article  Google Scholar 

  38. Talapur GG, Suryawanshi HM, Shitole AB, Sathyan S, Reddy VV (2016) Performance improvement of digital variable band hysteresis current control using dual processor microcontroller. In: IECON 2016-42nd annual conference of the IEEE industrial electronics society. IEEE, pp 2367–2371

  39. Shitole AB, Shelas Sathyan HM, Suryawanshi GG, Talapur PC (2017) Soft-switched high voltage gain boost-integrated flyback converter interfaced single-phase grid-tied inverter for spv integration. IEEE Trans Ind Appl 54(1):482–493

    Article  Google Scholar 

  40. Singh Y, Singh B, Mishra S (2020) Multifunctional control for PV-integrated battery energy storage system with improved power quality. IEEE Trans Ind Appl 56(6):6835–6845

    Article  Google Scholar 

  41. Al-Wesabi I, Zhijian F, Hussein HM, Farh AA, Al-Shamma’a HD, Al-Shaalan AM, Kandil T (2022) Maximum power extraction and dc-bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control. Sci Rep 12(1):19958

    Article  Google Scholar 

  42. Aurobinda Panda MK, Pathak SPS (2016) A single phase photovoltaic inverter control for grid connected system. Sadhana 41:15–30

    Article  Google Scholar 

  43. Abdelsalam AK, Massoud AM, Ahmed S, Enjeti PN (2011) High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans Power Electron 26(4):1010–1021

    Article  Google Scholar 

  44. Prudente M, Pfitscher LL, Emmendoerfer G, Romaneli EF, Gules R (2008) Voltage multiplier cells applied to non-isolated dc–dc converters. IEEE Trans Power Electron 23(2):871–887

    Article  Google Scholar 

  45. Lopez-Santos O, Martinez-Salamero L, Garcia G, Valderrama-Blavi H, Sierra-Polanco T (2014) Robust sliding-mode control design for a voltage regulated quadratic boost converter. IEEE Trans Power Electron 30(4):2313–2327

    Article  Google Scholar 

  46. Parthiban R, Umamaheswari B (2022) Novel soft-start technique for grid integration of LCL-filtered inverters. IETE J Res 68(1):117–128

    Article  Google Scholar 

Download references

Funding

No funding available.

Author information

Authors and Affiliations

Authors

Contributions

J Pavan: Conceptualization, Methodology, Software. P Nigam: Data curation, Writing—original draft preparation. S Padhee: Visualization, Investigation, Writing—Reviewing and editing.

Corresponding author

Correspondence to Subhransu Padhee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan, J., Nigam, P. & Padhee, S. Modeling and control of power electronic interface for grid-connected solar PV system. Int. J. Dynam. Control (2024). https://doi.org/10.1007/s40435-024-01444-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-024-01444-1

Keywords

Navigation