Skip to main content
Log in

A review and comparative analysis of maximum power point tracking control algorithms for wind energy conversion systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In the current era, renewable energy has emerged as a vital alternative to fossil fuels, driven by the repercussions of global warming and the depleting supply of fossil fuels. Among these alternative energies, wind energy is particularly noteworthy due to its minimal greenhouse gas emissions, cost-effectiveness, and widespread availability. Nonetheless, achieving efficient extraction of wind energy requires precise control of wind turbine operations to optimize power generation. This involves the utilization of different maximum power point tracking (MPPT) algorithms. This review paper extensively examines a variety of MPPT algorithms, classifying them into four main categories: indirect power control (IPC) algorithm, direct power control (DPC) algorithm, hybrid algorithm, and intelligent algorithm control techniques. The review explores the performance of conventional IPC and DPC algorithms, discussing and comparing them with modified conventional methods. Additionally, the hybrid approach, combining multiple MPPT algorithms to leverage benefits while mitigating drawbacks, is examined. Intelligent MPPT algorithms are discussed both independently and in hybrid configurations. The paper introduces a hybrid fractional-order intelligent MPPT algorithm, offering a detailed discussion and comparison with other intelligent algorithms. A meticulous comparison is conducted based on key parameters such as adaptability, computational complexity, efficiency, oscillation, overall expense, robustness, speed of convergence, storage, time response, wind speed measurement, and wind turbine characteristics. Acknowledging the exponential growth in wind energy systems and their increasing significance, this review paper aims to be an indispensable and technically advanced reference for future studies in the dynamic domain of MPPT algorithm control techniques for wind energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Davoudi M, Kasiri Far A (2020) Recurrent neural network based MPPT control of grid connected DFIG for wind turbine. WSEAS Trans Comput Res 8:1–10

    Article  Google Scholar 

  2. Azzouz S, Messalti S, Harrag A (2019) Innovative PID-GA MPPT controller for extraction of maximum power from variable wind turbine. Przeglad Elektrotechniczny 95(8):115–120

    Google Scholar 

  3. Ouhaddach K, Fadil HE, Malih AS, Ammeh L (2017) New MPPT optimizer for wind turbine energy sources. In: Int. conf. on automation, control engineering and computer science (ACECS) proceedings of engineering and technology-PET, vol 20, pp 59–64

  4. Chetouani E, Errami Y, Obbadi A, Sahnoun S (2021) Hybrid control using adaptive particle swarm optimization and integral backstepping control of grid-connected doubly fed induction generator. Trends Sci 18(23):712

    Article  Google Scholar 

  5. Additional Momentum (2023) WWEA half-year report 2023

  6. World Wind Wind Energy Association (2023) WWEA half-year report 2023

  7. Mohamed EA, Mamdooh A-S, Khairy S, Abo-Khalil Ahmed G (2020) Sensorless active and reactive control for DFIG wind turbines using opposition-based learning technique. Sustainability (Switzerland) 12(9):3583

    Google Scholar 

  8. Weather Guard Lightning Tech. Wind Turbine Cost: How Much? Are They Worth It In 2023?, 2030

  9. Apata O, Oyedokun DTO (2020) An overview of control techniques for wind turbine systems. Sci Afr 10:e00566

    Google Scholar 

  10. Dbaghi Y, Farhat S, Mediouni M, Essakhi H, Elmoudden A (2021) Indirect power control of DFIG based on wind turbine operating in MPPT using backstepping approach. Int J Electr Comput Eng 11(3):1951–1961

    Google Scholar 

  11. Vijayaprabhu A, Bhaskar KB, JasmineSusila D, Dinesh M (2021) Review and comparison of various types of generation using WECS topologies. IOP Conf Ser Mater Sci Eng 1177(1):012004

    Article  Google Scholar 

  12. Bekiroglu E, Yazar MD (2022) MPPT control of grid connected DFIG at variable wind speed. Energies 15(9):3146

    Article  Google Scholar 

  13. Pozo A, Ayala E, Simani S, Muñoz E (2021) Indirect speed control strategy for maximum power point tracking of the DFIG wind turbine system. Revista Técnica "energía" 17(2):92–101

  14. Bhati S (2020) Hybrid fuzzy-PID based MPPT enhancement of grid-connected DFIG wind energy eystem with TLBO optimization. Int J Eng Res V9(07)

  15. Suresh V, Emayavaramban G, Amudha A, Balachander K, Kavitha D (2018) Modeling, design and implementation of a power conversion system for WECS by using fuzzy based MPPT. J Adv Res Dyn Control Syst 10(5 Special Issue):1198–1211

    Google Scholar 

  16. Hamdan I, Youssef M, MM Noureldeen O (2023) A review of intelligent control systems for grid tie doubly fed induction generator based wind farm. SVU-Int J Eng Sci Appl 4(2):269–278

    Google Scholar 

  17. Ihedrane Y, Bekkali CE, Bossoufi B, Bouderbala M (2019) Control of power of a DFIG generator with MPPT technique for wind turbines variable speed. Green Energy Technol (January):105–129

  18. Smieee M Azzouzi, Garmat A, Popescu D, Zidi S, Mazouz L (2016) Modeling and control of wind energy conversion system. In: 2016 5th international conference on systems and control, ICSC 2016, pp. 377–382

  19. Zamzoum O, El Mourabit Y, Errouha M, Derouich A, El Ghzizal A (2018) Power control of variable speed wind turbine based on doubly fed induction generator using indirect field-oriented control with fuzzy logic controllers for performance optimization. Energy Sci Eng 6(5):408–423

    Article  Google Scholar 

  20. Jabal Laafou A, Ait Madi A, Addaim A, Intidam A (2020) Dynamic modeling and improved control of a grid-connected DFIG used in wind energy conversion systems. Math Probl Eng

  21. Chen P, Han D, Li KC (2020) Robust adaptive control of maximum power point tracking for wind power system. IEEE Access 8:214538–214550

    Article  Google Scholar 

  22. Chen Z, Liu J, Lin Z, Qu C (2018) Variable-constrained model predictive control of coordinated active power distribution for wind-turbine cluster. Appl Sci (Switz) 9(1):112

    Article  Google Scholar 

  23. Djeriri Y, Ahmed HM (2020) Robust nonlinear control of wind turbine driven doubly fed induction generators. Herit Sustain Dev 2(1):17–29

    Article  Google Scholar 

  24. Abdalkareem Jasim S, Mireya Romero Parra R, Salam Karim Y, Mahdi AB, Jade Catalan Opulencia M, Fakhriddinovich Uktamov K, Thaeer Hammid A (2022) Optimization of doubly-fed induction generator (DFIG) based wind turbine to achieve maximum power generation with imperialist competitive algorithm (ICA). Sci Prog 105(3)

  25. Chojaa H, Derouich A, Chehaidia SE, Zamzoum O, Taoussi M, Elouatouat H (2021) Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Rep 7:4809–4824

    Article  Google Scholar 

  26. Rezaei MM (2018) A nonlinear maximum power point tracking technique for DFIG-based wind energy conversion systems. Eng Sci Technol Int J 21(5):901–908

    Google Scholar 

  27. El Archi CZ, Nasser T, Essadki A, Alvarado J (2020) Real power control: MPPT and pitch control in a DFIG based wind turbine. In: 3rd international conference on advanced communication technologies and networking, CommNet 2020

  28. Bektache A, Boukhezzar B (2018) Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization. Int J Electr Power Energy Syst 101(April 2017):92–102

    Article  Google Scholar 

  29. Njiri JG, Söffker D (2016) State-of-the-art in wind turbine control: trends and challenges. Renew Sustain Energy Rev 60:377–393

    Article  Google Scholar 

  30. Pande J, Nasikkar P, Kotecha K, Varadarajan V (2021) A review of maximum power point tracking algorithms for wind energy conversion systems. J Mar Sci Eng 9(11):1–30

    Article  Google Scholar 

  31. Chhipa AA, Kumar V, Joshi RR, Chakrabarti P, Jasinski M, Burgio A, Leonowicz Z, Jasinska E, Soni R, Chakrabarti T (2021) Adaptive neuro-fuzzy inference system-based maximum power tracking controller for variable speed WECS. Energies 14(19):6275

    Article  Google Scholar 

  32. Alrowaili ZA, Ali MM, Youssef A, Mousa HH, Ali AS, Abdel-Jaber GT, Ezzeldien M, Gami F (2021) Robust adaptive HCS MPPT algorithm-based wind generation system using model reference adaptive control. Sensors 21(15):1–20

    Article  Google Scholar 

  33. Youssef AR, Mousa HHH, Mohamed EEM (2020) Development of self-adaptive P &O MPPT algorithm for wind generation systems with concentrated search area. Renew Energy 154:875–893

    Article  Google Scholar 

  34. Watil A, El Magri A, Raihani A, Lajouad R, Giri F (2020) Multi-objective output feedback control strategy for a variable speed wind energy conversion system. Int J Electr Power Energy Syst 121(December 2019):106081

    Article  Google Scholar 

  35. Chaicharoenaudomrung K, Areerak K, Areerak K, Bozhko S, Hill CI (2020) Maximum power point tracking for stand-alone wind energy conversion system using FLC-P &O method. IEEJ Trans Electr Electron Eng 15(12):1723–1733

    Article  Google Scholar 

  36. Umar DA, Alkawsi G, Jailani NL, Alomari MA, Baashar Y, Alkahtani AA, Capretz LF, Tiong SK (2023) Evaluating the efficacy of intelligent methods for maximum power point tracking in wind energy harvesting systems. Processes 11(5):1420

    Article  Google Scholar 

  37. Singh J, Ouhrouche M (2011) MPPT control methods in wind energy conversion systems. Fundam Adv Top Wind Power 15(1):1

    Google Scholar 

  38. Mousa HHH, Youssef AR, Mohamed EEM (2021) State of the art perturb and observe MPPT algorithms based wind energy conversion systems: a technology review. Int J Electri Power Energy Syst 126(PA):106598

    Article  Google Scholar 

  39. Trejos-Grisales L, Guarnizo-Lemus C, Serna S (2014) Overall description of wind power. Ingeniería y Ciencia 10(19):99–126

    Article  Google Scholar 

  40. Zhang X, Jia J, Zheng L, Yi W, Zhang Z (2023) Maximum power point tracking algorithms for wind power generation system: review, comparison and analysis. Energy Sci Eng 11(1):430–444

    Article  Google Scholar 

  41. Zouheyr D, Lotfi B, Abdelmadjid B (2021) Improved hardware implementation of a TSR based MPPT algorithm for a low cost connected wind turbine emulator under unbalanced wind speeds. Energy 232:1

    Article  Google Scholar 

  42. Govinda CV, Udhay SV, Rani C, Wang Y, Busawon K (2018) A review on various MPPT techniques for wind energy conversion system. In: 7th IEEE international conference on computation of power, energy, information and communication, ICCPEIC 2018, pp 310–326

  43. Zebraoui O, Bouzi M (2018) Comparative study of different MPPT methods for wind energy conversion system. IOP Conf Ser Earth Environ Sci 161(1):1

    Google Scholar 

  44. Hemanth Kumar MB, Saravanan B, Sanjeevikumar P, Blaabjerg F (2018) Review on control techniques and methodologies for maximum power extraction from wind energy systems. IET Renew Power Gener 12(14):1609–1622

    Article  Google Scholar 

  45. Fathabadi H (2016) Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique. Energy 113:1219–1230

    Article  Google Scholar 

  46. Tiwari R, Babu NR (2016) Recent developments of control strategies for wind energy conversion system. Renew Sustain Energy Rev 66:268–285

    Article  Google Scholar 

  47. Fathabadi H (2016) Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems. Energy Convers Manag 123:392–401

    Article  Google Scholar 

  48. Mozafarpoor-Khoshrodi S-H, Shahgholian G (2016) Improvement of perturb and observe method for maximum power point tracking in wind energy conversion system using fuzzy controller. Energy Equip Syst 4(2):111–122

    Google Scholar 

  49. Daili Y, Gaubert JP, Rahmani L (2015) Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors. Energy Convers Manag 97:298–306

    Article  Google Scholar 

  50. Yu KN, Liao CK (2015) Applying novel fractional order incremental conductance algorithm to design and study the maximum power tracking of small wind power systems. J Appl Res Technol 13(2):238–244

    Article  Google Scholar 

  51. Gaied H, Naoui M, Kraiem H, Goud BS, Flah A, Alghaythi ML, Kotb H, Ali SG, Aboras K (2022) Comparative analysis of MPPT techniques for enhancing a wind energy conversion system. Front Energy Res 10(August):1–15

    Google Scholar 

  52. Kumar D, Chatterjee K (2016) A review of conventional and advanced MPPT algorithms for wind energy systems. Renew Sustain Energy Rev 55:957–970

    Article  Google Scholar 

  53. Dalala Zakariya M, Ullah ZZ, Wensong Yu, Younghoon C, Sheng LJ (2013) Design and analysis of an MPPT technique for small-scale wind energy conversion systems. IEEE Trans Energy Convers 28(3):756–767

    Article  Google Scholar 

  54. Tripathi SM, Tiwari AN, Singh D (2015) Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: a technology review. Renew Sustain Energy Rev 51:1288–1305

    Article  Google Scholar 

  55. Ayushi S, Kumar GA, Paulson S (2017) A review of MPPT algorithms employed in wind energy conversion systems. J Green Eng 6(4):385–402

    Article  Google Scholar 

  56. Ganjefar S, Ghassemi AA, Ahmadi MM (2014) Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network. Energy 67:444–453

    Article  Google Scholar 

  57. Liu J, Meng H, Yang H, Lin Z, Wang W (2015) A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account. Energy Convers Manag 101:738–748

    Article  Google Scholar 

  58. Mousa HH, Youssef AR, Mohamed EE (2019) Modified P &O MPPT algorithm for optimal power extraction of five-phase PMSG based wind generation system. SN Appl Sci 1(8):838

    Article  Google Scholar 

  59. Ali MM, Youssef AR, Ali AS, Abdel-Jaber GT (2020) Variable step size PO MPPT algorithm using model reference adaptive control for optimal power extraction. Int Trans Electr Energy Syst 30(1):1–21

    Article  Google Scholar 

  60. Ahmed S, Rashid MA, Mohamed SB, Yaakob SB (2014) An online optimum-relation-based maximum power point tracking algorithm for wind energy conversion system. Eng Lett 27(4):822–830

    Google Scholar 

  61. Meziane KB, Dib F, Boumhidi I (2022) Intelligent variable speed wind turbine controller using the type-2 fuzzy logic based on PID. In: In Proceedings of the 2nd International Conference on Big Data, Modelling and Machine Learning (BML 2021). Science and Technology Publications, pp. 216-221

  62. Muñoz-Palomeque E, Sierra-García JE, Santos M (2023) Wind turbine maximum power point tracking control based on unsupervised neural networks. J Comput Des Eng 10(1):108–121

  63. Lu H, Xue F, Qin Z, Shi J, Qiao W, Yang W, Yang T (2019) Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system. Appl Energy 248(May):567–575

    Google Scholar 

  64. Sitharthan R, Karthikeyan M, Sundar DS, Rajasekaran S (2020) Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine. ISA Trans 96:479–489

    Article  Google Scholar 

  65. Yang B, Zhang X, Tao Yu, Shu H, Fang Z (2017) Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine. Energy Convers Manag 133:427–443

    Article  Google Scholar 

  66. Mokhtari Y, Rekioua D (2018) High performance of maximum power point tracking using ant colony algorithm in wind turbine. Renew Energy 126:1055–1063

    Article  Google Scholar 

  67. Qais MH, Hasanien HM, Alghuwainem S (2020) Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators. Appl Soft Comput J 86:105937

    Article  Google Scholar 

  68. Zhao Y, Wei C, Zhang Z, Qiao W (2013) A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems. IEEE J Emerg Sel Top Power Electron 1(4):203–216

    Article  Google Scholar 

  69. Liu P, Yang WT, Yang CE, Hsu CL (2015) Sensorless wind energy conversion system maximum power point tracking using Takagi–Sugeno fuzzy cerebellar model articulation control. Appl Soft Comput 29:450–460

    Article  Google Scholar 

  70. Wei C, Zhang Z, Qiao W, Qu L (2014) Intelligent maximum power extraction control for wind energy conversion systems based on online Q-learning with function approximation. In: 2014 IEEE energy conversion congress and exposition, ECCE 2014, pp 4911–4916

  71. Elaissaoui H, Zerouali M, El Ougli A, Tidhaf B (2020) MPPT algorithm based on fuzzy logic and artificial neural network (ANN) for a hybrid solar/wind power generation system. In: 4th international conference on intelligent computing in data sciences, ICDS 2020

  72. Viveiros C, Melício R, Igreja JM, Mendes VMF (2015) Supervisory control of a variable speed wind turbine with doubly fed induction generator. Energy Rep 1:89–95

    Article  Google Scholar 

  73. Rachedi MO, Saidi ML, Arbaoui F (2020) MPPT control design for variable speed wind turbine. Int J Electr Comput Eng 10(5):4604–4614

    Google Scholar 

  74. Yan R, Saha TK (2015) A new tool to estimate maximum wind power penetration level: in perspective of frequency response adequacy. Appl Energy 154:209–220

    Article  Google Scholar 

  75. Elnaggar M, Abdel Fattah HA, Elshafei AL (2014) Maximum power tracking in WECS (Wind energy conversion systems) via numerical and stochastic approaches. Energy 74(C):651–661

    Article  Google Scholar 

  76. Khan MJ (2022) An AIAPO MPPT controller based real time adaptive maximum power point tracking technique for wind turbine system. ISA Trans. 123:492–504

    Article  Google Scholar 

  77. Tiwari R, Ramesh Babu N (2016) Fuzzy logic based MPPT For permanent magnet synchronous generator in wind energy conversion system. IFAC-PapersOnLine 49(1):462–467

    Article  Google Scholar 

  78. Salem AA, Nour Aldin NA, Azmy AM, Abdellatif WSE (2019) A fuzzy logic-based MPPT technique for PMSG wind generation system. Int J Renew Energy Res 9(4):1751–1760

    Google Scholar 

  79. Ngo QV, Yi C, Nguyen TT (2020) The maximum power point tracking based-control system for small-scale wind turbine using fuzzy logic. Int J Electr Comput Eng 10(4):3927–3935

    Google Scholar 

  80. Harrag A, Messalti S (2017) A variable step size fuzzy MPPT controller improving energy conversion of variable speed DFIG wind turbine. Revue des Energies Renouvelables 20(2):295–308

    Google Scholar 

  81. Hong CM, Ting Chia O, Kai Hung L (2013) Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 50(1):270–279

    Article  Google Scholar 

  82. Chandrasekaran K, Mohanty M, Golla M, Venkadesan A, Simon SP (2022) Dynamic MPPT controller using cascade neural network for a wind power conversion system with energy management. IETE J Res 68(5):3316–3330

    Article  Google Scholar 

  83. Jaramillo-Lopez F, Kenne G, Lamnabhi-Lagarrigue F (2016) A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction. Renew Energy 86:38–48

    Article  Google Scholar 

  84. Assareh E, Biglari M (2015) A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm. Renew Sustain Energy Rev 51:1023–1037

    Article  Google Scholar 

  85. Medjber A, Guessoum A, Belmili H, Mellit A (2016) New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system. Energy 106:137–146

    Article  Google Scholar 

  86. Ata R (2015) Artificial neural networks applications in wind energy systems: a review. Renew Sustain Energy Rev 49:534–562

    Article  Google Scholar 

  87. Yaichi I, Semmah A, Wira P (2020) Control of doubly fed induction generator with maximum power point tracking for variable speed wind energy conversion systems. Period Polytech Electr Eng Comput Sci 64(1):87–96

    Article  Google Scholar 

  88. Kumar R, Agrawal HP, Shah A, Bansal HO (2019) Maximum power point tracking in wind energy conversion system using radial basis function based neural network control strategy. Sustain Energy Technol Assess 36(February):100533

    Google Scholar 

  89. Yaakoubi AE, Amhaimar L, Attari K, Harrak MH, Halaoui ME, Asselman A (2019) Non-linear and intelligent maximum power point tracking strategies for small size wind turbines: performance analysis and comparison. Energy Rep 5:545–554

    Article  Google Scholar 

  90. Meghni B, Ouada M, Saad S (2020) A novel improved variable-step-size P &O MPPT method and effective supervisory controller to extend optimal energy management in hybrid wind turbine

  91. Phan DC, Yamamoto S (2016) Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking. Energy 111:377–388

    Article  Google Scholar 

  92. Aubrée R, Auger F, Macé M, Loron L (2016) Design of an efficient small wind-energy conversion system with an adaptive sensorless MPPT strategy. Renew Energy 86:280–291

    Article  Google Scholar 

  93. Dursun EH, Koyuncu H, Kulaksiz AA (2021) A novel unified maximum power extraction framework for PMSG based WECS using chaotic particle swarm optimization derivatives. Eng Sci Technol Int J 24(1):158–170

    Google Scholar 

  94. Merabet A, Islam MA, Beguenane R, Trzynadlowski AM (2015) Multivariable control algorithm for laboratory experiments in wind energy conversion. Renew Energy 83:162–170

    Article  Google Scholar 

  95. Abdullah MA, Al-Hadhrami T, Tan CW, Yatim AH (2018) Towards green energy for smart cities: particle swarm optimization based MPPT approach. IEEE Access 6:58427–58438

    Article  Google Scholar 

  96. Sompracha C, Jayaweera D, Tricoli P (2019) Particle swarm optimisation technique to improve energy efficiency of doubly-fed induction generators for wind turbines. J Eng 2019(18):4890–4895

    Google Scholar 

  97. Gang H, Zheng Y, Abualigah L, Hussien AG (2023) DETDO: an adaptive hybrid dandelion optimizer for engineering optimization. Adv Eng Inform 57:102004

    Article  Google Scholar 

  98. Zare M, Ghasemi M, Zahedi A, Golalipour K, Mohammadi SK, Mirjalili S, Abualigah L (2023) A global best-guided firefy algorithm for engineering problems

  99. Ghasemi M, Zare M, Zahedi A, Trojovský P, Abualigah L, Trojovská E (2024) Optimization based on performance of lungs in body: lungs performance-based optimization (LPO). Comput Methods Appl Mech Eng 419:116582

    Article  MathSciNet  Google Scholar 

  100. Gang H, Guo Y, Wei G, Abualigah L (2023) Genghis Khan shark optimizer: a novel nature-inspired algorithm for engineering optimization. Adv Eng Inform 58:102210

    Article  Google Scholar 

  101. Ghasemi M, Zare M, Zahedi A, Akbari M-A, Mirjalili S, Abualigah L (2024) Geyser inspired algorithm: a new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization. J Bionic Eng 21(1):374–408

    Article  Google Scholar 

  102. Aribowo W, Rohman M, Baskoro F, Harimurti R, Yamasari Y, Yustanti W (2023) A novel hybrid prairie dog optimization algorithm—marine predator algorithm for tuning parameters power system stabilizer. J Robot Control (JRC) 4(5):878–895. https://doi.org/10.18196/jrc.v4i5.19521

    Article  Google Scholar 

  103. Sahoo GK, Choudhury S, Rathore RS, Bajaj M (2023) A novel prairie dog-based meta-heuristic optimization algorithm for improved control, better transient response, and power quality enhancement of hybrid microgrids

  104. Abualigah L, Oliva D, Jia H, Gul F, Khodadadi N, Hussien AG, Shinwan MA, Ezugwu AE, Abuhaija B, Zitar RA (2024) Improved prairie dog optimization algorithm by dwarf mongoose optimization algorithm for optimization problems. Multimed Tools Appl 83(11):32613–32653

    Article  Google Scholar 

  105. Moustafa G, El-Rifaie AM, Smaili IH, Ginidi A, Shaheen AM, Youssef AF, Tolba MA (2023) An enhanced dwarf mongoose optimization algorithm for solving engineering problems

  106. Agushaka JO, Ezugwu AE, Olaide ON, Akinola O, Zitar RA, Abualigah L (2023) Improved dwarf mongoose optimization for constrained engineering design problems. J Bionic Eng 20(3):1263–1295

    Article  Google Scholar 

  107. Ekinci S, Izci D (2023) Enhancing IIR system identification: harnessing the synergy of gazelle optimization and simulated annealing algorithms. e-Prime Adv Electr Eng Electron Energy 5:100225

    Article  Google Scholar 

  108. Hasanien HM, Alsaleh I, Tostado-Véliz M, Alassaf A, Alateeq A, Jurado F (2023) Optimal parameters estimation of lithium–ion battery in smart grid applications based on gazelle optimization algorithm. Energy 285:129509

    Article  Google Scholar 

  109. Nassef AM, Rezk H (2021) Optimal tuning of FOPID-like fuzzy controller for high-performance fractional-order systems. Comput Mater Continua 70(1):171–180

    Article  Google Scholar 

  110. Ullah N, Irfan Sami Md, Chowdhury S, Techato K, Alkhammash HI (2021) Artificial intelligence integrated fractional order control of doubly fed induction generator-based wind energy system. IEEE Access 9:5734–5748

    Article  Google Scholar 

  111. Shi JZ (2020) A fractional order general type-2 fuzzy PID controller design algorithm. IEEE Access 8:52151–52172

    Article  Google Scholar 

  112. Herissi B, Boudjehem D (2020) Fractional-order fuzzy controller for a PMSG wind turbine system. Int J Syst Sci 51(16):3237–3250

    Article  MathSciNet  Google Scholar 

  113. Benbouhenni H, Bizon N, Colak I, Thounthong P, Takorabet N (2022) Application of fractional-order PI controllers and neuro-fuzzy PWM technique to multi-rotor wind turbine systems. Electron (Switz) 11(9):1

    Google Scholar 

  114. Elyaalaoui K, Labbadi M, Ouassaid M, Cherkaoui M (2021) Optimal fractional order based on fuzzy control scheme for wind farm voltage control with reactive power compensation. Math Probl Eng

  115. Pan I, Das S (2016) Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans 62:19–29

    Article  Google Scholar 

  116. Benbouhenni H, Bizon N, Mosaad MI, Colak I, Djilali AB, Gasmi H (2024) Enhancement of the power quality of DFIG-based dual-rotor wind turbine systems using fractional order fuzzy controller. Expert Syst Appl 238:121695

    Article  Google Scholar 

  117. Abdullah MA, Yatim AHM, Tan CW (2011) A study of maximum power point tracking algorithms for wind energy system. In: 2011 IEEE 1st conference on clean energy and technology, CET 2011, pp 321–326

  118. Asghar AB, Liu X (2018) Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal rotor speed for variable-speed wind turbine. Neurocomputing 272:495–504

  119. Si W, Wang Y, Cheng S (2013) Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomputing 102:163–175

    Article  Google Scholar 

  120. Uddin MN, Amin IK (2018) Adaptive step size based hill-climb search algorithm for MPPT control of DFIG-WECS with reduced power fluctuation and improved tracking performance. Electric Power Compon Syst 46(19–20):2203–2214)

  121. Mousa HHH, Youssef AR, Mohamed EEM (2020) Hybrid and adaptive sectors P &O MPPT algorithm based wind generation system. Renew Energy 145:1412–1429

    Article  Google Scholar 

  122. Wr GXH, Joredo Zduplqj DQG, Folpdwh FW, Hqhuj U, Hvshfldoo V, Zlqg Hqhuj KDV, Ehhq SP, Srzhu LQG, Ghyhorshg KDV, Idvw Gxulqj WKH, Odvw GD, Kdv LW (2016) A MPPT strategy based on fuzzy control for a wind energy. Procedia Technol 22:697–704

    Article  Google Scholar 

  123. Marmouh S, Boutoubat M, Mokrani L (2017) MPPT fuzzy logic controller of a wind energy conversion system based on a PMSG. In: Proceedings of 2016 8th international conference on modelling, identification and control, ICMIC 2016, pp 296–302

  124. Nabipour M, Razaz M, Seifossadat SGH, Mortazavi SS (2017) A new MPPT scheme based on a novel fuzzy approach. Renew Sustain Energy Rev 74(January):1147–1169

    Article  Google Scholar 

  125. Sitharthan R, Parthasarathy T, Sheeba Rani S (2019) An improved radial basis function neural network control strategy-based maximum power point tracking controller for wind power generation system. Trans Inst Meas Control 41(11):3158–3170

    Article  Google Scholar 

  126. Kortabarria I, Andreu J, Martínez I, Alegría D, Jiménez J, Ignacio J, Robles E (2014) A novel adaptative maximum power point tracking algorithm for small wind turbines. Renew Energy 63:785–796

    Article  Google Scholar 

Download references

Acknowledgements

All authors approved the version of the manuscript to be published. I would like to acknowledge our hosting institution, FUTA and Springer Nature International Journal of Dynamics and Control

Funding

No applicable.

Author information

Authors and Affiliations

Authors

Contributions

Y. K. Teklehaimanot did conception and design of study, acquisition of data, analysis and/or interpretation of data, writing—original draft and editing. F. K. Akingbade performed interpretation of data, review and editing. B. C. Ubochi done interpretation of data, review and editing. T. O. Ale reviewed the article.

Corresponding author

Correspondence to Yakob Kiros Teklehaimanot.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teklehaimanot, Y.K., Akingbade, F.K., Ubochi, B.C. et al. A review and comparative analysis of maximum power point tracking control algorithms for wind energy conversion systems. Int. J. Dynam. Control (2024). https://doi.org/10.1007/s40435-024-01434-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-024-01434-3

Keywords

Navigation