Skip to main content
Log in

Design of CCM boost converter using fractional-order PID controller optimized with gray wolf algorithm for power factor correction

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The primary determining elements for the effective operation of power electronic converters are power quality (PQ) in terms of power factor, total harmonic distortion (THD), and ideal output regulation. The uncontrolled diode bridge rectifier draws pulsed input current, which may be managed with an easy and efficient active wave shaping control system in this study, bringing the power factor (PF) closer to unity and meeting the THD parameters. It controls the generated voltage as well. The goal of this study is to create a CCM boost converter-based active PFC control circuit that uses fractional-order PID control and gray wolf (GW) optimization that has higher robustness with lower sensitivity to error. The suggested plan uses a cascade controller providing adequate operation and results for upholding PQ. Additionally, the fractional notion has many benefits, including greater robustness to shocks and decreased sensitivity to inaccuracy. Simulation findings that guarantee significant tracking of the reference signal with a decreased rate of THD have been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3:
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors do not have permissions to share data.

References

  1. Marzang V, Hosseini SH, Rostami N, Alavi P, Mohseni P, Hashemzadeh SM (2020) A high step-up nonisolated DC–DC converter with flexible voltage gain. IEEE Trans Power Electron 35(10):10489–10500

    Article  Google Scholar 

  2. Alavi P, Mohseni P, Babaei E, Marzang V (2019) An ultra-high step-up DC–DC converter with extendable voltage gain and soft-switching capability. IEEE Trans Indus Electron 67(11):9238–9250

    Article  Google Scholar 

  3. Hashemzadeh SM, Marzang V, Pourjafar S, Hosseini SH (2021) An ultra high step-up dual-input single-output DC–DC converter based on coupled inductor. IEEE Trans Indus Electron 69(11):11023–11034

    Article  Google Scholar 

  4. Marzang V, Hashemzadeh SM, Alavi P, Khoshkbar-Sadigh A, Hosseini SH, Malik MZ (2021) A modified triple-switch triple-mode high step-up DC–DC converter. IEEE Trans Indus Electron 69(8):8015–8027

    Article  Google Scholar 

  5. Ghamari SM, Mollaee H, Khavari F (2020) Design of robust self-tuning regulator adaptive controller on single-phase full-bridge inverter. IET Power Electron 13(16):3613–3626

    Article  Google Scholar 

  6. Saadat SA, Ghamari SM, Mollaee H (2022) Adaptive backstepping controller design on Buck converter with a novel improved identification method. IET Control Theory Appl 16(5):485–495

    Article  Google Scholar 

  7. Ghamari SM, Mollaee H, Khavari F (2021) Robust self-tuning regressive adaptive controller design for a DC–DC BUCK converter. Measurement 174:109071

    Article  Google Scholar 

  8. Hashemzadeh SM, Rostami R, Marzang V, Hosseini SH (2020) August). Direct Power Control of PWM Three-Phase Rectifier Using the Predictive Method: Aims to Reduce THD. In: 2020 28th Iranian Conference on Electrical Engineering (ICEE). IEEE, pp 1–5

  9. Farhadi A, Mohammadi S, Hosseini SA, Shahbazi MM, Moradi MH (2023) Power factor correction of parallel-connected boost converter utilizing a fuzzy logic-based controller. In: 2023 8th international conference on technology and energy management (ICTEM), IEEE, pp 1–6

  10. Mollaee H, Ghamari SM, Saadat SA, Wheeler P (2021) A novel adaptive cascade controller design on a buck–boost DC–DC converter with a fractional-order PID voltage controller and a self-tuning regulator adaptive current controller. IET Power Electron 14(11):1920–1935

    Article  Google Scholar 

  11. Ghamari SM, Khavari F, Mollaee H (2023) Lyapunov-based adaptive PID controller design for buck converter. Soft comput 27(9):5741–5750

    Article  Google Scholar 

  12. Zhou Y, Wang B (2010) PWM-quasi-sliding mode control for APFC converters. Electr Eng 92:43–48

    Article  Google Scholar 

  13. Chiang H, Lin F, Chang J, Chen K, Chen Y, Liu K (2016) Control method for improving the response of single-phase continuous conduction mode boost power factor correction converter. IET Power Electron 9(9):1792–1800

    Article  Google Scholar 

  14. Bosque-Moncusi JM, Valderrama-Blavi H, Flores-Bahamonde F, Vidal-Idiarte E, Martínez-Salamero L (2018) Using low-cost microcontrollers to implement variable hysteresis-width comparators for switching power converters. IET Power Electron 11(5):787–795

    Article  Google Scholar 

  15. Kessal A, Rahmani L (2014) Ga-optimized parameters of sliding-mode controller based on both output voltage and input current with an application in the PFC of AC/DC converters. IEEE Trans Power Electron 29(6):3159–3165

    Article  Google Scholar 

  16. Wu S-T, Chen F-Y, Chien M-C, Wang J-M, Su Y-Y (2021) A hybrid control scheme with fast transient and low harmonic for boost PFC converter. Electronics (Basel) 10(15):1848

    Google Scholar 

  17. Marcos-Pastor A, Vidal-Idiarte E, Cid-Pastor A, Martinez-Salamero L (2016) Interleaved digital power factor correction based on the sliding-mode approach. IEEE Trans Power Electron 31(6):4641–4653

    Article  Google Scholar 

  18. Mollaee H, Ghamari SM, Khavari F (2022) Self-tuning regulator adaptive controller design for DC–DC boost converter with a novel robust improved identification method. IET Power Electron 15(13):1365–1379

    Article  Google Scholar 

  19. Ghamari SM, Khavari F, Molaee H, Wheeler P (2022) Generalised model predictive controller design for A DC–DC non-inverting buck–boost converter optimised with a novel identification technique. IET Power Electron 15(13):1350–1364

    Article  Google Scholar 

  20. Ghamari SM, Narm HG, Mollaee H (2022) Fractional-order fuzzy PID controller design on buck converter with antlion optimization algorithm. IET Control Theory Appl 16(3):340–352

    Article  Google Scholar 

  21. Abdollahzadeh M, Mollaee H, Ghamari SM, Khavari F (2023) Design of a novel robust adaptive neural network-based fractional-order proportional-integrated-derivative controller on DC/DC Boost converter. J Eng 2023(4):e12255

    Google Scholar 

  22. Ghamari SM, Jouybari TY, Mollaee H, Khavari F, Hajihosseini M (2023) Design of a novel robust adaptive cascade controller for DC–DC buck-boost converter optimized with neural network and fractional-order PID strategies. J Eng 2023(3):e12244

    Google Scholar 

  23. Ghamari SM, Khavari F, Mollaee H (2023) Adaptive backstepping controller design for DC/DC buck converter optimised by grey wolf algorithm IET Energy Syst Integr

  24. Roosta V, Ghamari SM, Mollaee H, Zarif MH (2023) A novel adaptive neuro linear quadratic regulator (ANLQR) controller design on DC-DC buck converter. IET Renew Power Gener 17(5):1242–1254

    Article  Google Scholar 

  25. Saadat SA, Ghamari SM, Mollaee H, Khavari F (2021) Adaptive neuro-fuzzy inference systems (ANFIS) controller design on single-phase full-bridge inverter with a cascade fractional-order PID voltage controller. IET Power Electron 14(11):1960–1972

    Article  Google Scholar 

  26. Khavari F, Ghamari SM, Abdollahzadeh M, Mollaee H (2023) Design of a novel robust type-2 fuzzy-based adaptive backstepping controller optimized with antlion algorithm for buck converter. IET Control Theory Appl 17(9):1132–1143

    Article  MathSciNet  Google Scholar 

  27. Memeghani MJ, Ghamari SM, Jouybari TY, Mollaee H, Wheeler P (2023) Generalised predictive controller (GPC) design on single-phase full-bridge inverter with a novel identification method. IET Control Theory Appl 17(3):284–294

    Article  MathSciNet  Google Scholar 

  28. Islam S, Khalfalla A, Hamoud M, Mehrjerdi H, Iqbal A, Marzang V (2023) Distributed secondary controller to minimize circulating current flowing among sources in DC microgrid. IEEE Access

  29. Silaa MY, Barambones O, Derbeli M, Napole C, Bencherif A (2022) Fractional order PID design for a proton exchange membrane fuel cell system using an extended grey wolf optimizer. Processes 10(3):450

    Article  Google Scholar 

  30. Kandasamy P, Kumar KP (2022) Efficient single-stage bridgeless AC–DC converter using grey wolf optimization. Comput Syst Sci Eng. https://doi.org/10.32604/csse.2022.021693

    Article  Google Scholar 

  31. Hashemzadeh SM, Al-Hitmi MA, Aghaei H, Marzang V, Iqbal A, Babaei E, Islam S (2024) An ultra-high voltage gain interleaved converter based on three winding coupled inductor with reduced input current ripple for renewable energy applications. IET Renew Power Gener 18(1):141–151

    Article  Google Scholar 

  32. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

Download references

Acknowledgements

I would like to take this opportunity to acknowledge that there are no individuals or organizations that require acknowledgment for their contributions to this work.

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Contributions

SL contributed to writing-original draft preparation, conceptualization, supervision, and project administration. WW contributed to methodology, software, validation, and language review.

Corresponding author

Correspondence to Songhong Lai.

Ethics declarations

Conflict of interest

The authors declare no competing of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, S., Wang, W. Design of CCM boost converter using fractional-order PID controller optimized with gray wolf algorithm for power factor correction. Int. J. Dynam. Control (2024). https://doi.org/10.1007/s40435-024-01409-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-024-01409-4

Keywords

Navigation